www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Aufgabe 18
Status: (Frage) beantwortet Status 
Datum: 22:18 Sa 22.11.2008
Autor: Airgin

Aufgabe
Untersuche die Funktion f. Berücksichtige auch das Verhalten von f für [mm] x\to\infty [/mm] und [mm] x\to0 [/mm]
f(x) = ((2ln(1-x))+1) / (x²-2x+1)

Hi,
da ich in den Stunden gefehlt hab in denen wir die Funktionsuntersuchung einer solchen Funktion durchgenommen haben, weiß ich überhaupt was ich machen soll.
Kann mir jemand die Aufgabe vorrechnen, damit ich weiß wie es geht um die nächste Funktion selber zu untersuchen?

LG



        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Sa 22.11.2008
Autor: Adamantin


> Untersuche die Funktion f. Berücksichtige auch das
> Verhalten von f für [mm]x\to\infty[/mm] und [mm]x\to0[/mm]
>  f(x) = ((2ln(1-x))+1) / (x²-2x+1)
>  Hi,
>  da ich in den Stunden gefehlt hab in denen wir die
> Funktionsuntersuchung einer solchen Funktion durchgenommen
> haben, weiß ich überhaupt was ich machen soll.
>  Kann mir jemand die Aufgabe vorrechnen, damit ich weiß wie
> es geht um die nächste Funktion selber zu untersuchen?
>  
> LG

Vorrechnen wäre wohl etwas zu viel verlangt, wenn es heißt, eine komplette Kurvendiskussion zu machen, oder? Im Internet findest du doch zentimeterweise Hilfen zu diesem Thema und auch, was du machen musst, also schreib doch bitte Probleme rein!

Normalerweise untersuchst du:

Definitionsbereich, Wertebereich, Schnittpunkte mit den Achsen, Verhalten im Unendlichen, Asymptoten, Extrema, Wendepunkte

Dann fertigst du noch eine Skizze an. Jetzt kannst du doch Schritt für Schritt diese Dinge umsetzen.

1.) Definitionsbereich: Dafür musst du schauen, welche x-Werte nicht eingesetzt werden dürfen. So darf der Nenner nicht 0 werden, da durch 0 teilen nicht definiert ist. Desweiteren hast du im Zähler einen natürlichen Logarithmus ln(x), dessen Definitionsbereich von vornherein nur x>0 ist, daher gilt diese Einschränkung auch für die gesamte Funktion.

2) NST solltest du können, dazu den Term 0 setzen. Übrig bleibt

$ 2ln(1-x)+1=0 $
$ 2ln(1-x)=-1 $
$ ln(1-x)=-1/2 $
$ [mm] e^{ln(1-x)}=e^{-1/2} [/mm] $
$ [mm] 1-x=\bruch{1}{\wurzel{e}} [/mm] $
$ [mm] x=-\bruch{1}{\wurzel{e}}+1 [/mm] $

Das ist deine NST

3) Verhalten im Unendlichen, dafür musst du dir die Funktion für große x-Werte ansehen, am besten mit dem Taschenrechner Werte einsetzen.

$ [mm] \limes_{x\rightarrow\infty}(\bruch{2ln(1-x))+1}{(x-1)^2})$ [/mm]

Nun, wenn x immer größer wird, ist der Zähler überhaupt nicht definiert, denn ln(x) erfordert ein positives Argument, daher existiert kein Grenzwert für große x-Werte. Die einzige Polstelle ist bei x=1 und der Graph nähert sich dieser Polstelle für x-Werte ganz nahe an 1, aber rechts davon exisitiert der Graph nicht.

$ [mm] \limes_{x\rightarrow-\infty}(\bruch{2ln(1-x))+1}{(x-1)^2})=0 [/mm] $

Der ln(x) enthält zwar große Argumente, aber der ln steigt sehr langsam an, [mm] (x-1)^2 [/mm] steigt dagegen sehr rasch an, daher wird der Nenner viel größer und der Bruch 0. Wende hier auch de L'Hopital an. Dann siehst du es schön klar.

4) Für die Ableitung benötigst du die Quotientenregel. Dann die erste Ableitung gleich 0 setzen und mit der zweiten Überprüfen.

5) Für Wendepunkte die zweite Ableitung 0 setzen und ggf. mit der dritten Ableitung überprüfen

6) Et voila: zeichnen


Bezug
                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Sa 22.11.2008
Autor: Airgin

Vielen Dank für deine Hilfe. Du hast Recht, eine komplette Kurvendisskusion wäre zu viel verlangt. Eigentlich wollte ich nur wissen wie man diese Funktion ableitet. Kannst du mir vllt vorrechenen wie man bei dieser Funktion ableitet?

Bezug
                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Sa 22.11.2008
Autor: janmoda

Hallo,

Für die Ableitung eines Quotienten gilt:

[mm] y=\bruch{u}{v} [/mm]

[mm] y'=\bruch{u'v-uv'}{v^{2}} [/mm]

in deinem Fall:

u=2ln(1-x)+1   v=x²-2x+1

[mm] y=\bruch{2ln(1-x)+1}{x^2-2x+1} [/mm]

[mm] y'=\bruch{[(2ln(1-x)+1)'*(x^2-2x+1)]-[(2ln(1-x)+1)*(x^2-2x+1)']}{(x^2-2x+1)^{2}} [/mm]

Ich hoffe, dass du die nun noch erforderlichen restlichen Schritte allein lösen kannst, ansonsten frage gerne nach weiterer Hilfe!

Gruß janmoda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de