www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:19 Do 08.10.2009
Autor: matherein

Aufgabe
Untersuchen Sie die trigonometrische Funktion f mit f(x) = [mm] 3sin(2x-\bruch{\pi}{2}) [/mm] auf einem geeigneten Intervall.

Hallo an alle Forenmitglieder,

Als Antwort steht im Lösungsbuch:
1. Periodenlänge:
Sie Sinusfunktion hat die Periodenlänge [mm] 2\pi; x_{1} [/mm] und [mm] x_{2} [/mm] markieren Anfang und Ende einer Periode, wenn gilt: [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi. [/mm] Wie komme ich auf die Bedingung [mm] 2x_{1}-\bruch{\pi}{2}=0 [/mm] und [mm] 2x_{2}-\bruch{\pi}{2}=2\pi? [/mm]
Mit [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{2}=\bruch{5}{4}\pi [/mm] ergibt sich die Periodenlänge p = [mm] x_{2}-x_{1}=\pi. [/mm] Es genügt also, f auf dem Intervall [mm] [0;\pi) [/mm] zu untersuchen.

2. Nullstellen:
[mm] 3sin(2x-\bruch{\pi}{2})=0 [/mm] ist erfüllt für alle x [mm] \in \IR [/mm] mit [mm] 2x-\bruch{\pi}{2}=k\pi [/mm] bzw. x= [mm] (2k+1)\bruch{\pi}{4} [/mm] (k [mm] \in \IZ). [/mm] Im Intervall [mm] [0;\pi) [/mm] liegen also die Nullstellen [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi. [/mm]
Hier weiß ich nicht nur nicht wie man auf die Bedingung kommt, sondern auch auf x= [mm] (2k+1)\bruch{\pi}{4} [/mm] und [mm] x_{1}=\bruch{1}{4}\pi [/mm] und [mm] x_{3}=\bruch{3}{4}\pi. [/mm]

Danke im Voraus für die Mühe
matherein

        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:10 Do 08.10.2009
Autor: ChopSuey

Hi matherein,

> Untersuchen Sie die trigonometrische Funktion f mit f(x) =
> [mm]3sin(2x-\bruch{\pi}{2})[/mm] auf einem geeigneten Intervall.
>  Hallo an alle Forenmitglieder,
>  
> Als Antwort steht im Lösungsbuch:
> 1. Periodenlänge:
> Sie Sinusfunktion hat die Periodenlänge [mm]2\pi; x_{1}[/mm] und
> [mm]x_{2}[/mm] markieren Anfang und Ende einer Periode, wenn gilt:
> [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und [mm]2x_{2}-\bruch{\pi}{2}=2\pi.[/mm] Wie
> komme ich auf die Bedingung [mm]2x_{1}-\bruch{\pi}{2}=0[/mm] und
> [mm]2x_{2}-\bruch{\pi}{2}=2\pi?[/mm]

Für $\ f(x) = [mm] \sin(x) [/mm] $ sind die Intervallränder von $\ [mm] [0,2\pi)$ [/mm] offensichtlich $\ [mm] x_1 [/mm] = 0$, $\ [mm] x_2 [/mm] = [mm] 2\pi$ [/mm]

Hier geht es um die Funktion $\ f(x) = [mm] 3\sin(2x-\frac{\pi}{2}) [/mm] $

Du kannst Substituieren mit $\ z = [mm] 2x-\frac{\pi}{2}$ [/mm] und erhältst

$\ f(z) = [mm] 3\sin(z) [/mm] $.

Im Intervall $\ [0, [mm] 2\pi)$ [/mm] sind die Intervallränder nun $\ [mm] z_1 [/mm] = 0$, $\ [mm] z_2 [/mm] = [mm] 2\pi$ [/mm]

Durch Rücksubstitution erhältst Du $\ [mm] z_1 [/mm] = [mm] 2x_1-\frac{\pi}{2} [/mm] $ und $\ [mm] z_2 =x_2-\frac{\pi}{2} [/mm] $

$\ [mm] z_1 [/mm] = 0 [mm] \gdw 2x_1-\frac{\pi}{2} [/mm] = 0$

$\ [mm] z_2 [/mm] = 0 [mm] \gdw 2x_2-\frac{\pi}{2} [/mm] = 0$

>  Mit [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{2}=\bruch{5}{4}\pi[/mm] ergibt
> sich die Periodenlänge p = [mm]x_{2}-x_{1}=\pi.[/mm] Es genügt
> also, f auf dem Intervall [mm][0;\pi)[/mm] zu untersuchen.
>
> 2. Nullstellen:
> [mm]3sin(2x-\bruch{\pi}{2})=0[/mm] ist erfüllt für alle x [mm]\in \IR[/mm]
> mit [mm]2x-\bruch{\pi}{2}=k\pi[/mm] bzw. x= [mm](2k+1)\bruch{\pi}{4}[/mm] (k
> [mm]\in \IZ).[/mm] Im Intervall [mm][0;\pi)[/mm] liegen also die Nullstellen
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]
> Hier weiß ich nicht nur nicht wie man auf die Bedingung
> kommt, sondern auch auf x= [mm](2k+1)\bruch{\pi}{4}[/mm] und
> [mm]x_{1}=\bruch{1}{4}\pi[/mm] und [mm]x_{3}=\bruch{3}{4}\pi.[/mm]

Wir schauen uns zunächst wieder $\ f(x) [mm] =\sin(x) [/mm] $ an und wissen, dass die Nullstellen immer 0 und dann ganzzahlige Vielfache von $\ [mm] \pi [/mm] $ sind.

Also $\ f(x) = [mm] \sin(x) [/mm] = 0$ mit [mm] $x_k [/mm] = 0, [mm] \pi, 2\pi, 3\pi,... [/mm] $

Ist ein Intervall wie $\ [0, [mm] \pi)$ [/mm] gegeben, so finden wir hier nur die ersten beiden Nullstellen mit $\ [mm] x_1 [/mm] = 0$ und $\ [mm] x_2 [/mm] = [mm] \pi$ [/mm]

Allerdings haben wir erneut die die Funktion [mm] f(x)=3sin(2x-\bruch{\pi}{2}) [/mm] und subsitutieren $\ z = [mm] 2x-\bruch{\pi}{2}$ [/mm]

Das ist im Grunde das selbe, wie oben.

$\ f(z) = 0 [mm] \gdw 2x_1-\bruch{\pi}{2} [/mm] = 0\ [mm] \wedge [/mm] \ [mm] 2x_2-\bruch{\pi}{2} =\pi [/mm] $

1. Nullstelle

$\  [mm] 2x_1-\bruch{\pi}{2} [/mm] = 0 [mm] \gdw 2x_1 [/mm] = [mm] \bruch{\pi}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}:\frac{2}{1} \gdw x_1 [/mm] = [mm] \bruch{\pi}{2}*\frac{1}{2} \gdw x_1 [/mm] = [mm] \bruch{\pi}{4} [/mm] = [mm] \bruch{1}{4}\pi [/mm]  $

2. Nullstelle

$\ [mm] 2x_2-\bruch{\pi}{2} =\pi \gdw 2x_2 =\pi +\bruch{\pi}{2} \gdw 2x_2 =\frac{\pi}{1} +\bruch{\pi}{2} \gdw 2x_2 =\frac{2\pi}{2} +\bruch{\pi}{2}\gdw 2x_2 =\frac{3\pi}{2} \gdw x_2 =\frac{3\pi}{2}:\frac{2}{1}\gdw x_2 =\frac{3\pi}{2}*\frac{1}{2} \gdw x_2 =\frac{3\pi}{4} [/mm] = [mm] \frac{3}{4}\pi$ [/mm]

>  
> Danke im Voraus für die Mühe
>  matherein

Hoffe, dass dir das hilft. Frag ruhig, wenn was unklar sein sollte.

Grüße
ChopSuey

Bezug
                
Bezug
Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Do 08.10.2009
Autor: matherein

Guten Abend ChopSuey,

vielen Dank für die ausführliche Erklärung. Ich konnte alles gut nachvollziehen!

LG
matherein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de