www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mo 15.04.2013
Autor: maruschka7

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Aufgabe
Gegeben sind die Funktion

[mm] f:x\to\bruch{1}{6}(x+1)^{2}(x-2) [/mm]

a.) Beschreiben sie den globalen Verlauf der Funktion fuer [mm] x\to\infty [/mm] und fuer [mm] x\to-\infty. [/mm]

b.) Bestimmen sie die Nullstellen und die Art der Nullstellen, d.h. ob mit oder ohne Vorzeichenwechsel.

c.) Bestimmen sie die erste und die zweite Ableitung von f.

d.) Bestimmen sie die Punkte, an dennen die Funktion f waagerechte Tangenten hat.

e.) An welchem Punkt B gibt es eine Tangente, die parallel zur Gerade g mit der Funktionsgleichung g(x)=-0,5x ist?

Bestimmen sie sowohl den Beruehrungspunkt B dieser Tangente als auch die Tangenten- und Normalengleichung in diesem Punkt.

f.) Erstellen sie eine Wertetabelle und zeichnen Sie den Graphen im Intervall (-2;3)



a.) [mm] f:x\to \bruch{1}{6}(x+1)^{2}(x-2)= \bruch{1}{6}x^3-\bruch{4}{6}x-\bruch{1}{6} [/mm]

[mm] x\to\infty [/mm] geht [mm] f(x)=\infty [/mm]
[mm] x\to-\infty [/mm] geht [mm] f(x)=-\infty [/mm]

b.) Wie finde ich die nullstellen?

c.) [mm] f'(x)=\bruch{3}{6}x^2-\bruch{4}{6} [/mm]
[mm] f''(x)=\bruch{6}{6}x [/mm]


        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Mo 15.04.2013
Autor: notinX

Hallo,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Gegeben sind die Funktion
>  
> [mm]f:x\to \bruch{1}{6}(x+1)^{2}(x-2)[/mm]
>  
> a.) Beschreiben sie den globalen Verlauf der Funktion fuer
> [mm]x\to\infty[/mm] und fuer [mm]x\to-\infty.[/mm]
>  
> b.) Bestimmen sie die Nullstellen und die Art der
> Nullstellen, d.h. ob mit oder ohne Vorzeichenwechsel.
>  
> c.)Bestimmen sie die erste und die zweite Ableitung von f.
>  
> d.)Bestimmen sie die Punkte, an dennen die Funktion f
> waagerechte Tangenten hat.
>  
> e.) An welchem Punkt B gibt es eine Tangente, die parallel
> zur Gerade g mit der Funktionsgleichung g(x)=-0,5xist?
>  
> Bestimmen sie sowohl den Beruehrungspunkt B dieser Tangente
> als auch die Tangenten- und Normalengleichung in diesem
> Punkt.
>  
> f.) Erstellen sie eine Wertetabelle und zeichnen Sie den
> Graphen im Intervall (-2;3)
>  
> [mm]a.)f:x\to \bruch{1}{6}(x+1)^{2}(x-2)= \bruch{1}{6}x^3-\bruch{4}{6}x-\bruch{1}{6}[/mm]
>  
> [mm]x\to\infty[/mm] geht [mm]f(x)=\infty[/mm]
>  [mm]x\to-\infty[/mm] geht [mm]f(x)=-\infty[/mm]

[ok]

>  
> b.)Wie finde ich die nullstellen?

Durch Lösen der Gleichung [mm] $\bruch{1}{6}(x+1)^{2}(x-2)=0$ [/mm]

>  
> [mm]c.)f'(x)=\bruch{3}{6}x^2-\bruch{4}{6}[/mm]

[notok] Die additive Konstante ist falsch.

>  [mm]f''(x)=\bruch{6}{6}x[/mm]
>    

[ok], das kann man aber noch vereinfachen.

Gruß,

notinX

Bezug
                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mo 15.04.2013
Autor: maruschka7

c)Ich verstehe nicht was bei der ersten Ableitung falsch ist.
Es ist doch 1*4/6=4/6 und dann faellt das x weg?


Bezug
                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 15.04.2013
Autor: fred97


> c)Ich verstehe nicht was bei der ersten Ableitung falsch
> ist.

Zeig, was Du gerechnet hast, dann finden wir den Fehler.

FRED

>  Es ist doch 1*4/6=4/6 und dann faellt das x weg?
>  


Bezug
                                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mo 15.04.2013
Autor: maruschka7

Ich habe nocheinmal die Funktion errechnet und komme jetzt auf ein anderes Ergebnis.
Also [mm] f(x)=\bruch{1}{6}(x+1)^2(x-2)=\bruch{1}{6}(x^2+2x+1)(x-2)=\bruch{1}{6}(x^3-3x-2)=\bruch{1}{6}x^3-\bruch{3}{6}x-\bruch{2}{6} [/mm]

stimmt das so? oder war meine erste Rechnung richtig?

und die Ableitung waere [mm] f'(x)=\bruch{1}{6}*3x^3-1-1*\bruch{3}{6}x^1-1-\bruch{2}{6}*0=\bruch{1}{6}*3x^2-\bruch{3}{6} [/mm]

Bezug
                                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Mo 15.04.2013
Autor: Steffi21

Hallo

[mm] f(x)=\bruch{1}{6}x^3-\bruch{3}{6}x-\bruch{2}{6} [/mm]

du kannst kürzen

[mm] f'(x)=\bruch{1}{6}*3*x^2-\bruch{3}{6} [/mm]

du kannst erneut kürzen, soweit aber ok

der Schritt davor ist mir nicht klar

Steffi

Bezug
                                                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mo 15.04.2013
Autor: maruschka7

Die erste Rechnung bezieht sich auf a.

[mm] f(x)=\bruch{1}{6}x^3-\bruch{1}{2}x-\bruch{2}{6} [/mm]

[mm] f´(x)=\bruch{1}{2}x^2-\bruch{1}{2} [/mm]

f´´(x)=x

Bezug
                                                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mo 15.04.2013
Autor: fred97


> Die erste Rechnung bezieht sich auf a.
>
> [mm]f(x)=\bruch{1}{6}x^3-\bruch{1}{2}x-\bruch{2}{6}[/mm]
>  
> [mm]f´(x)=\bruch{1}{2}x^2-\bruch{1}{2}[/mm]
>  
> f´´(x)=x

Jetzt stimmts

FRED


Bezug
                                                                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 15.04.2013
Autor: maruschka7

Danke!
Jetzt u den Nullstellen. Ich kann die doch an der ersten Funktion ablesen, oder ? also 2 und -1?

Bezug
                                                                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mo 15.04.2013
Autor: notinX


> Danke!
>  Jetzt u den Nullstellen. Ich kann die doch an der ersten
> Funktion ablesen, oder ? also 2 und -1?

Das stimmt, es gibt aber genau genommen drei Nullstellen, von denen eine doppelt ist.

Gruß,

notinX

Bezug
                                                                                
Bezug
Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 15.04.2013
Autor: maruschka7

Doppelt muesste -1 sein? Aber wie ist dann der Vorzeichenwechsel?

Bezug
                                                                                        
Bezug
Funktionsuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mo 15.04.2013
Autor: fred97


> Doppelt muesste -1 sein? Aber wie ist dann der
> Vorzeichenwechsel?

Wir haben

[mm] f(x)=\bruch{1}{6}(x+1)^{2}(x-2) [/mm]

Wegen [mm] (x+1)^{2} [/mm] haben wir:

    f(-1+h)<0 und  f(-1-h)<0   für h "klein"

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de