www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Funktionswerte bestimmen
Funktionswerte bestimmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionswerte bestimmen: Áufgabe
Status: (Frage) beantwortet Status 
Datum: 11:29 Fr 23.06.2006
Autor: Thorsten

Aufgabe 1
1. Bestimme die Funktionswerte ohne Taschenrechner

a) sin (150Grad)
b) cos(-150Grad)
c) cos [mm] (\bruch{ \pi}{4}) [/mm]
d) sin( [mm] \bruch{ \pi}{4}) [/mm]
e) tan ( [mm] \bruch{2}{3}\pi) [/mm]


Aufgabe 2
2. Bestimme die Lösungsmenge

a) cos(4x + 1) = -0,3
b) 6sin(x) + 2cos(x) = 2

Hallo,

ich brauche dringend Hilfe, bei diesen Aufgaben. Ich denke das man die Aufgaben 1. a) und b) mit Hilfe des Einheitskreis lösen kann.

Ab Aufgabe 1. c) usw. weis ich jedoch nicht weiter. Mir fehlt bei Aufgabe 2 jeglicher Ansatz.

Vielen Dank für euere Hilfe. Hab die Frage in keinem anderen Forum gestellt.

Gruß,
Thorsten


        
Bezug
Funktionswerte bestimmen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Fr 23.06.2006
Autor: Thorsten

Zu 1.

Habe bei Wikipedia die Reduktionsformel gefunden.Damit klappt es:

sin (150GRad) = sin (180Grad - 30 Grad)
-> sin (180Grad - 30 Grad) = sin (30Grad)
-> sin (30Grad) =  [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{1} [/mm]
->  [mm] \bruch{1}{2} [/mm] * [mm] \wurzel{1} [/mm] = 0,5


Bezug
        
Bezug
Funktionswerte bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 23.06.2006
Autor: leduart

Hallo Thorsten
> 1. Bestimme die Funktionswerte ohne Taschenrechner
>  
> a) sin (150Grad)
> b) cos(-150Grad)
> c) cos [mm](\bruch{ \pi}{4})[/mm]
>  d) sin( [mm]\bruch{ \pi}{4})[/mm]
> e) tan ( [mm]\bruch{2}{3}\pi)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


sin, cos und tan von 30°, 45° ,60°  und 90° sollte man entweder auswendig wissen, oder schnell mit Pythagoras ausrechnen können. 30°=\pi/6  und 60°=\pi/3 hat man im gleichseitigen Dreieck, Seitenlänge1 und ingezeichneter Höhe. dann sieht man direkt sin30°=1/2, cos30°=1/2*\wurzel{3} wenn man die Höhe mit Pythagoras ausrechnet, und damit tan30°=1/\wurzel{3}=\wurzel{3}/3
bei 60° dasselbe haalbe Dreieck, sin und cos vertauschen die Rollen also cos60=1/2, sin60=1/2*\wurzel{3},  tan60=\wurzel{3}
bei 45° nimmt man ein gleichschenkliges rechtw. Dreieck mit Hypothenuse 1 und hat mit Pythagoras sin45=cos45=1/2*\wurzel{2} tan45=1
Die 2 hier genannten Dreiecke sollte man immer skizzieren, wenn die Winkel vorkommen.
Für Winkel größer 90 oder kleiner 0 ist es immer am besten das am Einheitskreis anzusehen. und dann auf einen der Werte oben zurückzuführen.
mit \pi entspricht 180° sollte man die anderen Werte in Grad umrechnen, (später ist man damit so vertraut, dass man das automatisch weiss. Also z. Bsp 2/3\pi entspricht 120° usw. damit kannst du jetzt die ganze Aufgabe 1.

>
> 2. Bestimme die Lösungsmenge
>  
> a) cos(4x + 1) = -0,3

Hier denkst du dir (4x + 1)=Y und hast cosY=-0,3, dann brauchst du den TR um arccos-0,3 auszurechnen . Dann hast du Y=\pm 107°,  \pm 107+n*360°  besser in rad rechnen
also Y=\pm 1,8..+n*2\pi  dann hast du 4x-1=Y setzest den Wert ein und rechnest x aus.

>  b) 6sin(x) + 2cos(x) = 2

Habt ihr die "Additionstheoreme" gehabt? also sin(x+y)=sinxcosy+cosxsiny
und dasselbe für cos(x+y) ?
Dann musst du die hier benutzen. weil cos^{2}a+sin^{2}a=1 ist, kann 6 und 2 nicht cos oder sin von irgendwas sein.
Ich muss die Gleichung erst noch ändern.
1. Schritt 6sin(x) + 2cos(x) = 2   daraus 3sin(x) + cos(x) = 1
2. Schritt ich dividiere die Gleichung durch \wurzel{3^{2}+1^{2}}=\wurzel{10}
und habe 3/\wurzel{10}sinx+1/\wurzel{10}*cosx=1/\wurzel{10}
jetzt kann ich setzen 3/\wurzel{10}=cosy   1/\wurzel{10}=siny
1/\wurzel{10}=sin(x+y)  und daraus y=0,32..  +n*2\pi,  x+y=0,32+m*2\pi
damit x=0, x =2\pi usw.
Bei dieser speziellen Gleichung  3sin(x) + cos(x) = 1 kannst du auch direkt sehen, dass sie für cosx=1 sinx=0 erfüllt ist.
Ich hab dir also nen Weg gezeigt, der allgemeiner ist.
Andere Möglichkeit: du weisst $sin^2 x+cos^2x=1$deshalb $cosx=\wurzel(1-sin^2x}$ das setzest du in deine Gleichung ein:
$ 3sin(x) + cos(x) = 1$  daraus $3sin(x)+ \wurzel(1-sin^2(x)}=1$
nenne sinx=z löse die Wurzelgleichung.
Gruss leduart
  

Bezug
        
Bezug
Funktionswerte bestimmen: Zu Aufgabe 2b
Status: (Antwort) fertig Status 
Datum: 09:46 Sa 24.06.2006
Autor: Karthagoras

Hallo Thorsten, Hallo Leduart,

2b kann man auch so lösen:

[mm] $6\sin [/mm] x+ [mm] 2\cos [/mm] x=2 [mm] \gdw$ [/mm]

[mm] $\gdw \begin{array}[h]{l} \overbrace{z\cos t}^{=6} *\sin x+ \overbrace{z\sin t}^{=2}*\cos x=2 \\ \frac26=\frac13=\frac{z\sin t}{z\cos t}=\tan t \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l}z\cos t*\sin x+z\sin t*\cos x=2 \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l}z*\sin \left(x+t\right)=2 \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \begin{array}[h]{l} \sin\left(x+t\right)=\frac2{z} \\ t=\arctan \frac13 \wedge z=\frac6{\cos t} \end{array}$ [/mm]

[mm] $\gdw \mbox{etc.}$ [/mm]

Gruß Karthagoras

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de