www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Fußpunkt Lotes
Fußpunkt Lotes < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fußpunkt Lotes: Vektorrechnung Fußpunkt Lot
Status: (Frage) beantwortet Status 
Datum: 19:47 So 23.02.2014
Autor: Suji

Aufgabe
<br>
Hallo ihr Liebe,

ich habe dieses Bsp versucht zu lösen jedoch bin ich denke ich gescheitert. Könnte mir vielleicht jemand einen Lösungsvorschlag zukommen lassen? Bin für jede Hilfe sehr dankbar!!

Das Bsp lautet (b) ist nicht wichtig für mich ich wollte es nur der vollständigkeitshalber auch anführen.


Fällen Sie vom Punkt P(1,2,3) das Lot auf die Ebene, die durch x-y-z=4 beschrieben wird und berechnen Sie
a) den Fußpunkt des Lotes,
b)den kürzesten Abstand des Punktes von der Ebene.




Lg Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


<br>

        
Bezug
Fußpunkt Lotes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 23.02.2014
Autor: Marcel

Hallo,

> <br>
>  Hallo ihr Liebe,
>  
> ich habe dieses Bsp versucht zu lösen jedoch bin ich denke
> ich gescheitert. Könnte mir vielleicht jemand einen
> Lösungsvorschlag zukommen lassen? Bin für jede Hilfe sehr
> dankbar!!
>  
> Das Bsp lautet (b) ist nicht wichtig für mich ich wollte
> es nur der vollständigkeitshalber auch anführen.
>  
>
> Fällen Sie vom Punkt P(1,2,3) das Lot auf die Ebene, die
> durch x-y-z=4 beschrieben wird und berechnen Sie
> a) den Fußpunkt des Lotes,
> b)den kürzesten Abstand des Punktes von der Ebene.
>  
>
>
> Lg Danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> <br>

ein Normalenvektor der Ebene (d.h. ein Vektor, der "senkrecht auf die Ebene
steht") ist durch

    [mm] $\vec{n}=\vektor{1\\-1\\-1}$ [/mm]

gegeben (warum?).

Um (a) zu lösen berechne den Schnittpunkt der gegebenen Ebene mit der
durch

    $g [mm] \colon [/mm] $ [mm] $\vektor{x_1\\x_2\\x_3}=\vektor{1\\2\\3}+r*\vektor{1\\-1\\-1}$ [/mm] ($r [mm] \in \IR$) [/mm]

definierten Gerade.

(Dann ist (b) auch einfach zu lösen... wie?)

Gruß,
  Marcel

Bezug
                
Bezug
Fußpunkt Lotes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 So 23.02.2014
Autor: Marcel

P.S.

Hinweis: Man kann nun erst die Ebene in Parameterform bringen (rein der
Übung wegen solltest Du diesen Weg auch mal durchrechnen), aber am
Einfachsten ist es so:

    [mm] $x=x_1=1+r\,,$ $y=x_2=2-r$ [/mm] und [mm] $z=x_3=3-r$ [/mm]

in

    $x-y-z=4$

einsetzen - damit dann [mm] $r\,$ [/mm] bestimmen (und wie's weitergeht, ist dann klar,
oder?).

Gruß,
  Marcel

Bezug
                        
Bezug
Fußpunkt Lotes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 So 23.02.2014
Autor: Suji

Ich denke ich habe das viel umständlicher gemacht, kann man das so auch machen oder ist meine Variante falsch? Ich bin da so rangegangen:

1)habe den gegebenen Punkt skizziert und einen Fußpunkt F oder Vektor f. also in meiner Skizze.

2)Dann habe ich die Koordinatenform der Ebene in die Parameterform umgewandelt.

3)Nun habe ich den Normalvektor der Ebene bestimmt. was gleichzeitig der Richtungsvektor des Lotes ist?
wäre bei mir (0;-1;-1)

4)Als nächstes habe ich die Lot Gleichung aufgestellt:

f = (1;2;3) + r * (0;-1;-1)

5)Dann habe ich die Ebenengleichung mit der Lotgleichung gleichgesetzt und somit ein Gleichungssystem für 3 unbekannte inkl. r, ich löse also für r auf und kriege -4 raus.  nun setzte ich in die Lotgleichung ein :

f = ( 1;2;3) + 4 * (0;-1;-1) = (1;-2;-1)

6)nun rechne ich f - den punkt also um die länge herauszubekommen also den Vektor der Länge:

(1;-2;-1) - (1;2;3) = ( 0; -4; -4)

7) nun kann ich den Abstand ermitteln:

d(P/E) = |d| und das ergibt dann 5,31.

Ist das so irgendwie richtig ?

Lg

P.s.: danke für die schnelle Antwort :)

Bezug
                                
Bezug
Fußpunkt Lotes: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 So 23.02.2014
Autor: Marcel

Hallo Suji,

> Ich denke ich habe das viel umständlicher gemacht, kann
> man das so auch machen oder ist meine Variante falsch? Ich
> bin da so rangegangen:
>  
> 1)habe den gegebenen Punkt skizziert und einen Fußpunkt F
> oder Vektor f. also in meiner Skizze.
>  
> 2)Dann habe ich die Koordinatenform der Ebene in die
> Parameterform umgewandelt.

wie gesagt, kann man machen, sollte man zur Übung gerne auch mal
machen, wird aber umständlicher! (Wie sieht denn Deine Parameterform
aus? Solche sind ja nicht eindeutig!)

> 3)Nun habe ich den Normalvektor der Ebene bestimmt. was
> gleichzeitig der Richtungsvektor des Lotes ist?
>  wäre bei mir (0;-1;-1)

"Den" Normalenvektor gibt es nicht - Du kannst einen(!) Normalenvektor
bestimmen. Selbst, wenn bei Euch "Normalenvektoren" auch auf Länge 1
normiert sein sollten, ist der nur bis auf Richtung eindeutig (d.h. "Vorzeichen").

Und Dein Normalenvektor ist falsch:

Bei einer Ebene

    [mm] $\{(x,y,z) \in \IR^3: ax+by+cz=d\}$ [/mm]

kann man "Normalenvektoren" [mm] $\vec{n}$ [/mm] immer direkt ablesen, sie sind linear
abhängig von:

    [mm] $\vec{n}_0=\vektor{a\\b\\c}\,.$ [/mm]
(Nur nichttriviale interessieren uns hier!)

Bei Dir ist [mm] $a=1\,$ [/mm] und [mm] $b=c=-1\,.$ [/mm]

> 4)Als nächstes habe ich die Lot Gleichung aufgestellt:
>  
> f = (1;2;3) + r * (0;-1;-1)

Siehe oben:

    [mm] $f=(1,2,3)+r*(\red{1},-1,-1)\,.$ [/mm]

> 5)Dann habe ich die Ebenengleichung mit der Lotgleichung
> gleichgesetzt und somit ein Gleichungssystem für 3
> unbekannte inkl. r, ich löse also für r

Naja, der Punkt [mm] $f\,$ [/mm] muss nun in der Ebene liegen, also muss

     [mm] $\textbf{\blue{1}}*(1+\red{r*1})+(\textbf{\blue{-1}})*(2-r)+(\textbf{\blue{-1}})*(3-r)=4.$ [/mm]

Die dickmarkierten blauen Zahlen sind die Koordinaten von [mm] $\vec{n}_0.$ [/mm] (Die Du
aber eh aus der Ursprungsgleichung der Ebene kennst.)

> auf und kriege -4
> raus.  

Rechne das nochmal nach, dann sollte

    [mm] $r=8/3\,$ [/mm]

rauskommen, wenn Du Deinen Fehler+Folgefehler korrigierst!

> nun setzte ich in die Lotgleichung ein :
>  
> f = ( 1;2;3) + 4 * (0;-1;-1) = (1;-2;-1)

Siehe oben! [mm] ($r\,$ [/mm] ist falsch und Dein Normalenvektor auch!)
  

> 6)nun rechne ich f - den punkt also um die länge
> herauszubekommen also den Vektor der Länge:
>  
> (1;-2;-1) - (1;2;3) = ( 0; -4; -4)

Ja, jetzt berechnest Du [mm] $p-f\,,$ [/mm] um dann [mm] $\|p-f\|$ [/mm] auszurechnen. Nur stimmt Dein
[mm] $f\,$ [/mm] hier nicht! (Eigentlich berechnest Du [mm] $f-p\,,$ [/mm] aber das ist ja egal, wenn
es nur um die Länge geht...)

> 7) nun kann ich den Abstand ermitteln:
>  
> d(P/E) = |d| und das ergibt dann 5,31.

Hier wäre das dann doch

    [mm] $\sqrt{16+16}=\sqrt{32}\,,$ [/mm]

da sagt mein TR aber 5,65...

> Ist das so irgendwie richtig ?

Wie gesagt, ich denke, logisch machst Du da das, was ich im P.S. gesagt
habe, aber Dein Normalenvektor ist falsch, woraus sich alle folgenden
Fehler natürlich in Folge ergeben.

Zur Kontrolle:

    [mm] $r=8/3\,,$ [/mm]

    [mm] $f=(11/3,\;-2/3,\;1/3)$ [/mm]

habe ich berechnet.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de