www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Fuzzy-Sets / De Morgan
Fuzzy-Sets / De Morgan < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fuzzy-Sets / De Morgan: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 07:51 Mo 28.06.2004
Autor: DerAndiY

Hallo,
gibt es eine moeglichkeit zu zeigen dass [mm] \overline{A \cup B} [/mm] = [mm] \bar{A} \cap \bar{B} [/mm] auch fuer Fuzzy- Sets gilt, wenn fuer [mm] \cap [/mm] der min- und fuer [mm] \cup [/mm] der max Operator verwendet wird? Mir faellt spontan das Aufstellen weiner Tabelle auf, aber es muss doch auch anders gehen, oder?

Desweiteren ist zu zeigen dass der min-operator eine t-norm und der max-operator eine t-conorm (s-norm) ist.

Viel Spass
Andy

P.S. Wer nicht fragt bleibt dumm ;)

        
Bezug
Fuzzy-Sets / De Morgan: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mo 28.06.2004
Autor: Julius

Hallo Andy!

Die von dir angesprochenen de Morganschen-Regeln für Fuzzy-Mengen werden []hier (relativ weit unten im Text) bewiesen.

Zu deiner anderen Frage: Ich kenne mich damit zu wenig aus. Entweder du schreibst alle Definitionen, Sätze und Beweise aus deinem Skript zu diesem Thema hier auf oder du setzt einen Link auf dein Skript. Sonst können wir dir, so fürchte ich, nicht weiterhelfen.

Liebe Grüße
Julius

Bezug
                
Bezug
Fuzzy-Sets / De Morgan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Mo 28.06.2004
Autor: DerAndiY

Hi Julius,
danke fuer Deinen Link und sorry fuer meine unpraezise formulierung.
Ich habe als Anhang eine Definition fuer t-s-Norm mitgeschickt.
Zu beweisen ist nun, dass der min- Operator eine t-Norm und der max- Operator eine s- Norm ist. Der max- Operator liefert einfach das Maximum seiner Operanden und der min- Operator das Minimum respektive.


Cheers
Andy

Anhang:
Alternative Definitionen für Vereinigung und Durchschnitt
t-Norm und s-Norm (t-Conorm)
Min- und Max-Operator sind eine Möglichkeit, die Mengen-Verknüpfungen [mm] \cap [/mm] und [mm] \cup [/mm] mathematisch umzusetzen. Ganz allgemein bedient man sich zweier Abbildungsfunktionen s und t mit jeweils 2 Argumenten. Diese Funktionen (als t- und s-Norm bezeichnet) bilden den zweidimensionalen
Wertebereich von 0 bis 1 (incl.) auf das geschlossene Intervall von 0 bis 1 ab,
also gilt
s , t : [ 0 , 1 ] x [ 0 , 1 ] [mm] \rightarrow [/mm]  [ 0 , 1 ] . Die t-Norm verwendet man dabei für die Berechnung der Zugehörigkeiten bei der Durchschnittsbildung,
die s-Norm (auch als t-Conorm bezeichnet) liefert den Zugehörigkeitsgrad für die Mengenvereinigung. Es gilt mithin
[mm] \mu_A\capB(x) [/mm] = t ( [mm] \mu_A(x) [/mm] , [mm] \mu_B(x) [/mm] )
[mm] \mu_A\cupB(x) [/mm] = s ( [mm] \mu_A(x) [/mm] , [mm] \mu_B(x) [/mm] ) .
Damit t und s auch für die Realisierung der Mengen-Verknüpfungen verwendet werden können, muss gelten:
s(x,y) = s(y,x) -> Kommutativ
s(x, s(y,z)) = s( s(x,y), z)  -> Assoziativ
s(x,1) = s(1,x) = 1  -> spez. Operationen auf 0 und 1
s(x,0) = s(0,x) = x
x [mm] \leq [/mm] w und y [mm] \leq [/mm] z  -> Monotonie
[mm] \Rightarrow [/mm] s(x,y) [mm] \leq [/mm] s(w,z)
Man kann relativ einfach nachweisen (siehe Übungen), dass min- und max-Operator t- und s-
Normen sind.

Bezug
                        
Bezug
Fuzzy-Sets / De Morgan: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 29.06.2004
Autor: Julius

Hallo!

Also, wenn ich das richtig sehe, musst du doch jetzt einfach für den [mm] $\max$-Operator [/mm] die folgenden Rechengesetze nachweisen:

Für alle $x,y [mm] \in [/mm] [0,1]$ muss gelten:

(1) [mm] $\max(x,y) [/mm] = [mm] \max(y,x)$ [/mm]
(2) [mm] $\max(x, \max(y,z)) [/mm] = [mm] \max( \max(x,y), [/mm] z)$
(3) [mm] $\max(x,1) [/mm] = [mm] \max(1,x) [/mm] = 1$
(4) [mm] $\max(x,0) [/mm] = [mm] \max(0,x) [/mm] = x$
(5) [mm] $x\leq [/mm] w$ und [mm] $y\leq [/mm] z$ [mm] $\Rightarrow$ $\max(x,y)\leq \max(w,z)$ [/mm]

Aber ist das nicht vollkommen trivial? Was gibt es denn da noch zu zeigen?

Klar, man (2) und (5) noch mit Fallunterscheidungen verifizieren.

Du hast mir ja die Axiome wie eine $s$-Norm, also eine $t$-Conorm genannt.

Mit ähnlichen Axiomen (wie lauten die genau?) für eine $t$-Norm lässt sich dann nachweisen, dass der [mm] $\min$-Operator [/mm] eine $t$-Norm ist.

Hast du denn jetzt damit noch Schwierigkeiten??

Liebe Grüße
Julius

Bezug
                                
Bezug
Fuzzy-Sets / De Morgan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Mi 30.06.2004
Autor: DerAndiY

Hmm, Du hast wohl recht.
Ich habe mich wohl dadurch, dass ich noch nie etwas von t-Normen gehoert habe, etwas abschrecken lassen.
Trotzdem Danke

Cheers
Andy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de