www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - GGT beweise
GGT beweise < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

GGT beweise: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:09 Do 28.03.2013
Autor: DieNase

Aufgabe 1
Ubung ¨ 8. Seien m und n ganze Zahlen. Zeige: wenn ganze Zahlen a und b existieren mit
am + bn = 1, dann ist ggT(m, n) = 1.

Aufgabe 2
Ubung ¨ 10. Sei Fn die Folge der Fibonacci-Zahlen, gegeben durch die Rekursion
F0 = F1 = 1 Fn+1 = Fn + Fn−1
Zeige, daß ggT(Fn, Fn+1) = 1 fur jedes ¨ n (Induktion).

Zu eins muss ich sagen das ich da nicht wirklich weiß wie ich das zeigen soll... Ich hab mir überlegt ich könnte ja sagen der ggT(m,n) > 1 doch wie weiter? Hier steh ich total auf der leitung...

Bei den fibonachi zahlen hab ich 2 dinge bisher getan:
1.) eine art kete gebildet
[mm] F_{n+1} [/mm] = [mm] F_{n} [/mm] + [mm] F_{n-1} [/mm]
[mm] F_{n+2} [/mm] = [mm] 2*F_{n} [/mm] + [mm] F_{n-1} [/mm]
[mm] F_{n+5} [/mm] = [mm] 8*F_{n} [/mm] + [mm] 5*F_{n-1} [/mm]

Jetzt müsste ich zeigen das die zahlen die vor Fn bzw. Fn-1 sind teilerfremd sind. (naja das sind die fibonachizahlen ^^)

Mein nächster anlauf war dann dieser hier:

[mm] ggT(F_{n},F_{n+1}) [/mm] = 1

Basis [mm] F_{0} [/mm] und [mm] F_{1} [/mm] ggT(1,1) = 1

[mm] ggT(F_{n+1},F_{n+2}) [/mm] = 1

beides anders geschrieben:
a * [mm] F_{n} [/mm] + b * [mm] F_{n+1} [/mm] = 1
d * [mm] F_{n} [/mm] + (c+d) * [mm] F_{n+1} [/mm] = 1  --> [mm] ggT(F_{n+1},F_{n+2}) [/mm] umgeschrieben.

mein ziel wars eigentlich die erste zeile irgendwie in der zweiten zeile zu finden. Naja irgendwie ist sie schon da. Aber halt auch net wirklich ganz. Ich dachte mir jetzt ok ich weiß das Fn und Fn+1 teiler fremd sind.

Argo muss ich nurnoch zeigen das d und c teilerfremd sind und ich wäre fertig.

Und irgendwie hab ich das gefühl das ich zweimal das selbe problem bloß anders formuliert habe.

Mein lösungsansatz war dieser hier:
d = e*q +0
c = e*p +0

Sollte also d und c ein teiler haben so muss dies ja gelten. Doch so recht kann ich damit immernoch nix anfangen.

Anhang(e ist meine angenommener teiler der existiert wollte das ganze durch widerspruch zeigen)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
GGT beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 28.03.2013
Autor: sometree

Hallo,
.

>  Zu eins muss ich sagen das ich da nicht wirklich weiß wie
> ich das zeigen soll... Ich hab mir überlegt ich könnte ja
> sagen der ggT(m,n) > 1 doch wie weiter? Hier steh ich total
> auf der leitung...

Der Ansatz ist gut. Zeige damit, dass es keine a,b geben kann mit an+bm=1, da n und m einen gemeinsamen nicht-trivialen Teiler haben.  

> Bei den fibonachi (sic) zahlen hab ich 2 dinge bisher getan:

Ich würde hier Aufgabe 1 nicht verwenden.
Zeige ggT(a,a+b)=ggT(a,b) für beliebige a,b.
Dann ist die Induktion ein Zweizeiler


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de