GLEICHUNG BESCHREIBEN < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:23 Di 03.05.2005 | Autor: | mausi |
Hallo, ich hab ma ne Frage
bei dieser Aufgabe ja
beschreiben sie die durch die Gleichung [mm] x_1+2x_2+x_3=2,(x_1,x_2,x_3) [/mm] beschriebene Ebene im [mm] R^3 [/mm] mit Hilfe von 3 Punkten im [mm] R^3
[/mm]
kann mal bitte jemand einen Tipp dazu geben???
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:58 Di 03.05.2005 | Autor: | Marcel |
Hallo Mausi!
> Hallo, ich hab ma ne Frage
>
> bei dieser Aufgabe ja
>
> beschreiben sie die durch die Gleichung
> [mm]x_1+2x_2+x_3=2,(x_1,x_2,x_3)[/mm] beschriebene Ebene im [mm]R^3[/mm] mit
> Hilfe von 3 Punkten im [mm]R^3[/mm]
> kann mal bitte jemand einen Tipp dazu geben???
Klar, wobei ich mir nicht ganz sicher bin, ob ich die Aufgabenstellung richtig verstehe .
Jedenfalls hast du ja die Gleichung [mm] $(\star)$ $x_1+2x_2+x_3=2$ [/mm] als Ebenengleichung gegeben. Wie findest du nun einen Punkt, der in der Ebene liegt? Naja, für einen solchen Punkt [mm] $P(p_1,\,p_2,\,p_3)$ [/mm] muss die Gleichung [mm] $(\star)$ [/mm] erfüllt sein, das heißt, es muss gelten:
[mm] $p_1+2p_2+p_3=2$.
[/mm]
Damit bekommt man leicht drei Punkte heraus, indem man zwei Komponenten gleich $0$ setzt und die dritte so berechnet, dass [mm] $(\star)$ [/mm] erfüllt ist.
Beispiel:
Sei [mm] $A(a_1,\,a_2,\,a_3)=(a_1,\,0,\,0)$. [/mm] Nun muss [mm] $a_1$ [/mm] noch so gefunden werden, dass [mm] $a_1+2*a_2+a_3=2$ [/mm] gilt, wobei [mm] $a_2=a_3=0$, [/mm] also:
[mm] $a_1=2$.
[/mm]
Mit anderen Worten:
[mm] $A(2,\,0,\,0)$ [/mm] ist ein Punkt, der in der von [mm] $(\star)$ [/mm] beschriebenen Ebene liegt.
Weiter kannst du dir analog überlegen, dass [mm] $B(0,\,1,\,0)$ [/mm] und [mm] $C(0,\,0,\,2)$ [/mm] auch in der von [mm] $(\star)$ [/mm] beschriebenen Ebene liegen.
So, und nun ist es noch die Frage, ob wir hier nicht evtl. drei Punkte gefunden haben, die auf einer Geraden liegen, denn dann würde es nicht ausreichen, zu sagen, dass die durch [mm] $(\star)$ [/mm] beschriebene Ebene die Ebene durch diese drei Punkte ist, da die Ebene dann nicht eindeutig beschrieben wäre (es gibt unendlich viele Ebenen durch eine Gerade im [mm] $\IR^3$).
[/mm]
Wie kann man das jetzt prüfen? Eine Möglichkeit wäre, die Gerade durch $A$ und $B$ anzugeben (man sieht sofort, dass $A [mm] \not=B$) [/mm] und zu prüfen, ob $C$ auch auf dieser Geraden liegt.
Eine andere Möglichkeit wäre, nachzuweisen (per Definition von linearer Unabhängigkeit), dass die Differenzvektoren [mm] \overrightarrow{AB}[/mm] und [m] \overrightarrow{AC}[/m] linear unabhängig sind.
Eine weitere Möglichkeit wäre es, das Kreuzprodukt [mm] \overrightarrow{AB} \times \overrightarrow{AC}[/mm] zu berechnen und dann zu sehen, dass dieses [mm] $\not=\vektor{0\\0\\0}$ [/mm] ist und daher [mm] \overrightarrow{AB}, \overrightarrow{AC}[/mm] linear unabhängig sind!
Viele Grüße,
Marcel
|
|
|
|