www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ganzrationale Funktionen
Ganzrationale Funktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktionen: Aufstellen einer Gleichung 3.
Status: (Frage) beantwortet Status 
Datum: 11:54 Di 09.09.2008
Autor: Rambo

Aufgabe
Bestimme eine Gleichung dritten Gerades folgendes Graphens!
[Dateianhang nicht öffentlich]

Es wurde folgender Graph vorgelegt, von dem wir eine Gleichung dritten Gerades bestimmen sollen :

also die nullstelle,also der x wert welcher den graphen schneidet wäre doch P (0/0) oder?
wäre der punkt P (10/20) ein hochpunkt oder eine Wendestelle,bin mir da auch nicht so ganz sicher.



Vielen Dank

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Ganzrationale Funktionen: Anhang?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Di 09.09.2008
Autor: Bastiane

Hallo Rambo!

> Bestimme eine Gleichung dritten Gerades folgendes
> Graphens!
>  Es wurde folgender Graph vorgelegt, von dem wir eine
> Gleichung dritten Gerades bestimmen sollen :
>  
> also die nullstelle,also der x wert welcher den graphen
> schneidet wäre doch P (0/0) oder?
>  wäre der punkt P (10/20) ein hochpunkt oder eine
> Wendestelle,bin mir da auch nicht so ganz sicher.
>  
> [img][url=1]
>  
> Vielen Dank

Kann es sein, dass du einen Anhang vergessen hast? Jedenfalls macht die Aufgabenstellung so irgendwie keinen Sinn. [kopfkratz]

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Ganzrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Di 09.09.2008
Autor: Rambo

der anhang wurde so eben hinzugefügt oder ist er noch nicht zu sehen?

Bezug
        
Bezug
Ganzrationale Funktionen: Hochpunkt
Status: (Antwort) fertig Status 
Datum: 12:11 Di 09.09.2008
Autor: Loddar

Hallo Rambo!


Der Punkt [mm] $P_2 [/mm] \ (  \ 10 \ | \ 20 \ )$ ist eindeutig ein Hochpunkt.
Zusätzlich ist [mm] $P_1 [/mm] \ (  \ 0 \ | \ 0 \ )$ nicht nur Nullstelle sondern auch ein Tiefpunkt der Funktion.

Damit gilt also für beide Punkte, dass dort jeweils die 1. Ableitung den Wert 0 hat.


Gruß
Loddar


Bezug
                
Bezug
Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Di 09.09.2008
Autor: Rambo

gut das habe ich mir zu erst auch so gedacht,das der punkt p2 (10/20) ein hochpunkt sein muss und keine wendestelle.

nun muss ich doch erst mal diese punkte in die allgemeine gleichung dritten gerades einsetzen oder?

0 = a [mm] x^{3} [/mm] + b x² + cx + d

Bezug
                        
Bezug
Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 09.09.2008
Autor: Rambo

1.Für P (0/0) habe ich folgendes raus:

0 = a+b+c+d

und dann die erste ableitung gebildet:

3ax²+2bx+c

und dann P (o/o) hier eingesetzt :

3a+2b+c --> 1. gleichung

2. Für P (10/20)

20 = 1000a+100b+10c+d

in 1.ableitung insetzen:

20 = 300a+20b+c

muss ich diese nicht gleich null setzen?

stimmt das bis jetzt?

Danke!

Bezug
                                
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Di 09.09.2008
Autor: XPatrickX

Hey

> 1.Für P (0/0) habe ich folgendes raus:
>  
> 0 = a+b+c+d

Nein, dass stimmt leider nicht, du musst für jedes x die Nulleinsetzen:
[mm] 0=a*0^3+b*0^2+c*0+d [/mm]
[mm] \gdw [/mm] 0 = d  (1.Gleichung)

>
> und dann die erste ableitung gebildet:
>  
> 3ax²+2bx+c [ok]
>  
> und dann P (o/o) hier eingesetzt :
>  
> 3a+2b+c --> 1. gleichung
>  

Selber Fehler wie oben!
Dies ergibt dann schon die 2. Gleichung.


> 2. Für P (10/20)
>  
> 20 = 1000a+100b+10c+d [ok] (3.Gleichung)
>  
> in 1.ableitung insetzen:
>  
> 20 = 300a+20b+c
>
> muss ich diese nicht gleich null setzen?
>  

Richtig, es liegt ja an der Stelle 10 ein Hochpunkt vor, also lautet die 4. Gleichung: 300a+20b+c=0

> stimmt das bis jetzt?
>  
> Danke!

Mit Hilfe dieser 4 Gleichungen kannst du nun $a,b,c,d$ bestimmen.

Grüße Patrick

Bezug
                                        
Bezug
Ganzrationale Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:43 Di 09.09.2008
Autor: Rambo

also die 2. gleichung wäre dann :

d= 0

und was mache ich danach?

Bezug
                                                
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Di 09.09.2008
Autor: XPatrickX

siehe unten

Bezug
                        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 09.09.2008
Autor: XPatrickX


> gut das habe ich mir zu erst auch so gedacht,das der punkt
> p2 (10/20) ein hochpunkt sein muss und keine wendestelle.
>  
> nun muss ich doch erst mal diese punkte in die allgemeine
> gleichung dritten gerades einsetzen oder?
>  
> 0 = a [mm]x^{3}[/mm] + b x² + cx + d  

Ja, die beiden bekannten Punkte in diese Gleichung und außerdem jeweils die x-Werte in die 1. Ableitung und diese dann gleich Null setzen (wegen Extrempunkte).

Grüße Patrick


Bezug
                                
Bezug
Ganzrationale Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:35 Di 09.09.2008
Autor: Rambo

P(0/0)

f(0) = a+b+c+d

in 1. Ableitung :

f´(0)=3a+2b+c

P(10/20)

f(10) = 1000a+100b+10c+d

in 1.ableitung:

f´(10) = 300a+20 b +c

ist das korrekt? wie gehe ich dann weiter vor??

Danke!

Bezug
                                        
Bezug
Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Di 09.09.2008
Autor: Rambo

ALso wäre es folgendermaßen:

f(0) :  0=d

in 1.ableitung:

anstatt . 3a+2b+c  ist es 0= c oder wie?

und das mit P (10/20) stimmt?

Bezug
                                                
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Di 09.09.2008
Autor: XPatrickX


> ALso wäre es folgendermaßen:
>  
> f(0) :  0=d
>  
> in 1.ableitung:
>  
> anstatt . 3a+2b+c  ist es 0= c oder wie?

Genau! Jetzt wissen wir schonmal, dass c=d=0 ist.

>  
> und das mit P (10/20) stimmt?

Ja, deine Aufgabe ist es nun noch a und b zu bestimmen mit Hilfe dieser beiden Gleichungen:

20 = 1000a+100b+10c+d
300a+20b+c=0

Da wir schon wissen, dass c=d=0 ist, vereinfacht sich das ganze natürlich zu:

1000a+100b=20
300a+20b=0

Bezug
                                                        
Bezug
Ganzrationale Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Di 09.09.2008
Autor: Rambo

a = -0,04

b = 0,6 = 3/5

das wär es dann?

also die gleichung dritten gerades lautet dann:

[mm] -0,04x^{3} [/mm] + 0,6x²+0x+0

richtig?

danke!

Bezug
                                                                
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Di 09.09.2008
Autor: XPatrickX


> a = -0,04
>  
> b = 0,6 = 3/5
>  
> das wär es dann?
>  
> also die gleichung dritten gerades lautet dann:
>  
> [mm]-0,04x^{3}[/mm] + 0,6x²+0x+0

[daumenhoch]

Sauber aufgeschrieben:

[mm] f(x)=-\frac{1}{25}x^3+\frac{3}{5}x^2 [/mm]

>  
> richtig?
>  
> danke!

Bitte,
Gruß Patrick

Bezug
                                                                        
Bezug
Ganzrationale Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Di 09.09.2008
Autor: Rambo

Vielen vielen Dank!



Bezug
                                        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Di 09.09.2008
Autor: XPatrickX

Siehe hier

Ich gehe davon aus, dass wir zeitgleich einen Beitrag geschrieben haben und du daher meine zweite Antwort nicht gesehen hast.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de