www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ganzrationale Funktionen
Ganzrationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzrationale Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 21.09.2005
Autor: BlackDevil

Hey Leute!
Ja, ich bins schon wieder!
Aber diesmal nicht mit einer Extremwertaufgabe.
Meine Aufgabe diesmal lautet:

Eine ganzrationale Funktion f ist so zu bestimmen, dass ihr Graph einen Übergangsbogen zwischen zwei Halbgeraden bildet. Der Grad von f soll möglichst klein sein.
a) Der Graph von f soll an den Anschlussstellen keinen "Knick" aufweisen. Präzisiere diese Forderung mathematisch und bestimme dann f(x).

Ich habe leider gar keine Ahnung, wie ich da überhaupt anfangen soll, deswegen wäre es schon super klasse, wenn mir jemand mit dem Ansatz auf die Sprünge helfen könnte!
Ich danke euch schon einmal ganz lieb und sage bis bald!
Euer Mathegenie, BlackDevil! ;o)

        
Bezug
Ganzrationale Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mi 21.09.2005
Autor: Cool-Y

also die forderung, dass an den anschlussstellen kein knick sein soll, bedeutet, dass die funktion f an den Enden der halbgeraden die gleiche steigung haben muss wie diese halbgeraden. dann muss natürlich noch der funktionswert der funktion an den enden der halbgeraden gleich sein wie diese. da dies dann insgesamt 4 forderungen sind, würde ich einen ansatz mit einer parabel dritten grades machen. das sähe dann so aus:

[mm] x_{1} [/mm] und [mm] x_{2} [/mm] seien die x-werte, an denen die halbgeraden enden und [mm] g_{1} [/mm] und [mm] g_{2} [/mm] die halbgeraden.

es muss wegen den forderungen gelten:
[mm] f(x_{1})=g_{1}(x_{1}) [/mm]
[mm] f(x_{2})=g_{2}(x_{2}) [/mm]
[mm] f'(x_{1})=g_{1}'(x_{1}) [/mm]
[mm] f'(x_{2})=g_{2}'(x_{2}) [/mm]

mit diesem ansatz sollte die aufgabe zu lösen sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de