www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Ganzzahlig teilbare Gleichung
Ganzzahlig teilbare Gleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ganzzahlig teilbare Gleichung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 05.10.2006
Autor: Vertex

Aufgabe
Für welche n [mm] \in \IN [/mm] ist

n(n+1)(2n+1)  durch 6 ganzzahlig teilbar

Hallo nochmal, heute gehts mit meinen Fragen Schlag auf Schlag...

Mit ein wenig herumprobieren, kommt man recht schnell darauf das die Formel anscheinend für alle n [mm] \in \IN [/mm] ganzzahlig durch 6 teilbar ist.
Das will allerdings bewiesen werden und so mache ich mich also an die vollständige Induktion:

Induktionsanfang mit n=1

1(1+1)(2*1+1) =
1*2*3 = 6

Induktionsschritt auf n+1, es gelte die Induktionsannahme das n(n+1)(2n+1) für alle n [mm] \in \IN [/mm] ganzahlig durch 6 teilbar ist

(n+1)[(n+1)+1][2(n+1)+1]

Ich wills kurz machen...
Nach etwas umformen kommt man nun auf:

n(n+1)(2n+1) + [mm] 6(n+1)^{2} [/mm]

Soweit so gut. Links vom "+" haben wir laut Induktionsannahme ein vielfaches von 6 und rechts haben wir ebenfalls ein vielfaches von 6 stehen.

Wenn man zwei vielfache von 6 addiert, erhält man ein vielfaches von 6... aber warum? Wie kann ich das mathematisch korrekt begründen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ganzzahlig teilbare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Do 05.10.2006
Autor: M.Rex

Hallo

Nennen wir die Vielfachen mal m und n

Wir wissen ja, dass m ein Vielfaches von6 ist, es gibt also ein [mm] \overline{m}, [/mm] mit [mm] 6\overline{m}=m [/mm]
Dasselbe gilt für [mm] 6\overline{n}=n [/mm]

Jetzt wissen wir, dass
[mm] m+n=6\overline{m}+6\overline{n}=6(\overline{m}+\overline{n}), [/mm] was ja auf jeden Fall ein Vielfaches von 6 ist.

Marius

Bezug
                
Bezug
Ganzzahlig teilbare Gleichung: Nochmals Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Do 05.10.2006
Autor: Vertex

Schlicht und einfach!

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de