Gauß-Quadratur, Grad, Beweis < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:06 Do 11.02.2016 | Autor: | sissile |
Aufgabe | Theorem: Seien [mm] x_0
Sei [mm] L_i:= \int_a^b l_i(x) \omega [/mm] (x) dx wobei [mm] l_i(x)=\prod_{j=0, j \not= i}^n \frac{x-x_j}{x_i-x_j} [/mm] die Langrange Grundpolynome sind.
Es folgt [mm] \forall [/mm] Polynome p mit Grad kleinergleich 2n+1:
[mm] \int_a^b [/mm] p(x) [mm] \omega(x) [/mm] dx = [mm] \sum_{i=0}^n L_i p(x_i) [/mm] |
Hallo
Wir wissen schon dass die Quadraturformel für Polynome bis Grad n exakt lösbar ist.
Nun ist mir bei dem Beweis von der Vorlesung eine entscheidente Sache nicht klar:
Beweis:
Sei p ein Polynom von Grad 2n+1, [mm] p=p_{n+1} [/mm] *q +r mit grad(q),grad(r) [mm] \le [/mm] n
[mm] \sum_{i=0}^n L_i p(x_i)= \sum_{i=0}^n (L_i p_{n+1} (x_i) q(x_i) [/mm] + [mm] L_i r(x_i))
[/mm]
Da [mm] x_i [/mm] eine Nullstelle von [mm] p_{n+1} [/mm] ist:
= [mm] \sum_{i=0}^n L_i r(x_i) [/mm]
Da grad(r) [mm] \le [/mm] n und hier wissen wir bereits, dass die Quadraturformel exakt sind
[mm] =\int_{a}^b [/mm] r(x) [mm] \omega(x) [/mm] dx
Da [mm] p_{n+1} [/mm] normal auf [mm] span\{p_0,..,p_n\}ist p_{n+1} [/mm] normal auf q(x) bezüglich des Innenprodukts [mm]
= [mm] \int_a^b p_{n+1}(x) [/mm] q(x) [mm] \omega(x) [/mm] dx + [mm] \int_a^b [/mm] r(x) [mm] \omega(x) [/mm] dx= [mm] \int_a^b [/mm] p(x) [mm] \omega [/mm] (x) dx
[mm] \Box
[/mm]
Der Beweis wäre vollkommen klar aber wieso gibt es solche r und q anfangs mit grad(r),grad(q) [mm] \le [/mm] n. Klar die Polynom-Division kann ich machen, aber wieso weiß ich über den Grad von p und q so genau bescheid?
Hat das was mit der 3-Term-Rekursion zu tun?
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:06 Fr 12.02.2016 | Autor: | leduart |
Hallo
wenn du ein Polynom (n+1) ten Grades mit einem n ten Grades mult. ergibt sich welcher Grad? kann also q einen Grad >n haben? wenn r einen grad >n hat dividiert man weiter durch q ! bis der Rest maximal Grad n hat.
Gruß leduart
|
|
|
|