www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Gauss-Test
Gauss-Test < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauss-Test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 So 01.08.2010
Autor: Torkin

Aufgabe
x1....xn sei das Ergebnis einer einfachen Zufallsstichprobe vom Umfang n=100 aus einer normalverteilten Grundgesamtheit.
Es seien [mm] \summe_{i=1}^{100} [/mm] Xi² = 19 und [mm] \bruch{1}{100} \summe_{i=1}^{100} [/mm] Xi = 0.3 bekannt.

Berechnen Sie den Testfunktionswert des Einstichproben Gauss Tests für die Behauptung, dass der Erwartungswert 0.2 beträgt und sigma = 0.5 gilt.

Wie komme ich denn hier auf mein arithmetisches Mittel für die Formel vom Testfunktionswert? Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gauss-Test: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 01.08.2010
Autor: luis52

Moin Torkin

[willkommenmr]

>  Wie komme ich denn hier auf mein arithmetisches Mittel
> für die Formel vom Testfunktionswert?

Wo ist das Problem?
Das arithmetische Mittel  ist angegeben mit [mm] $\bruch{1}{100} \summe_{i=1}^{100} X_i [/mm] = 0.3 $.

vg Luis


Bezug
                
Bezug
Gauss-Test: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:26 So 01.08.2010
Autor: Torkin

Nabend Luis,
das Problem ist, ich habe in Statistik leider noch ein Brett vorm Kopf :D Also immmer wenn da [mm] \bruch{1}{n}\summe_{i=1}^{n} [/mm] in der Aufgabenstellung steht, ist das mein AM, egal was da noch so an Angaben steht? Weil mich hat diese zweite Summe jetzt verwirrt!?

Bezug
                        
Bezug
Gauss-Test: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 So 01.08.2010
Autor: luis52


> ist das mein AM, egal was da noch so an Angaben steht? Weil
> mich hat diese zweite Summe jetzt verwirrt!?

Mich auch. Beim Gauss-Test wird, wie hier, [mm] $\sigma^2$ [/mm] als bekannt vorausgesetzt. Die Pruefgrosse ist  

[mm] $\frac{\bar X-\mu}{\sigma}\sqrt{n}$. [/mm]

Fuer die Berechnung der t-Statistik

[mm] $\frac{\bar X-\mu}{\hat\sigma}\sqrt{n}$ [/mm]

mit [mm] $\hat\sigma^2=\sum(x_i-\bar x)^2/(n-1)$ [/mm] brauchst du die zweite Summe.
vg Luis


Bezug
                        
Bezug
Gauss-Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 05.08.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de