www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Gauss Approximation
Gauss Approximation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauss Approximation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:06 Fr 17.09.2010
Autor: Limboman

Aufgabe
Man bestimme die Gauß-Approximation der Funktion [mm] f(x)=\sqrt{x} [/mm] bzgl. der L²-Norm über dem Intervall[0,1] in den Polynomräumen [mm] P_{0},P_{1}, P_{2}. [/mm]


Ich habe leider keine Ahnung wie ich da vorgehen muß, kann mir bitte einer helfen.

Diese Frage wurde in keinem anderen Forum gestellt.


        
Bezug
Gauss Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Fr 17.09.2010
Autor: fred97

Sei H der Hilbertraum [mm] L^2[0,1] [/mm] (mit der [mm] L^2-Norm $||*||_2$) [/mm]

Weiter sei K ein n-dim Unterraum von H mit der Ortonormalbasis [mm] u_1, [/mm] ..., [mm] u_n. [/mm]

Die Gauß- Approx.  Funktion $ [mm] f(x)=\sqrt{x} [/mm] $ in K ist:

              [mm] \summe_{i=1}^{n}u_i, [/mm]

wobei $<*,*>$ das Skalarprodukt auf  [mm] L^2[0,1] [/mm] ist, also [mm] $=||g||_2) [/mm]

FRED

Bezug
                
Bezug
Gauss Approximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Do 13.11.2014
Autor: maxk1990

Hi,
sorry, dass ich den Thread nochmal ausgrabe. Ich sitze gerade vor der gleichen Aufgabe und habe die Antwort gelesen. Das kann doch aber noch nicht alles sein, oder?

Also was muss ich denn genau machen?

Ich verstehe nicht, wo ich anfangen muss

VG Max

Bezug
                        
Bezug
Gauss Approximation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 13.11.2014
Autor: fred97


> Hi,
>  sorry, dass ich den Thread nochmal ausgrabe. Ich sitze
> gerade vor der gleichen Aufgabe und habe die Antwort
> gelesen. Das kann doch aber noch nicht alles sein, oder?
>  
> Also was muss ich denn genau machen?

Z.B. ist [mm] P_2 [/mm] ein 3 -dimensionaler UR von [mm] L^2. [/mm] Bestimme also eine ONB von [mm] P_2 [/mm]  und verfahre so, wie ich es oben gesagt habe.

FRED

>  
> Ich verstehe nicht, wo ich anfangen muss
>  
> VG Max


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de