www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Gaussparameter
Gaussparameter < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaussparameter: Ermittlung von Gaussparametern
Status: (Frage) beantwortet Status 
Datum: 12:25 Di 08.04.2008
Autor: chrisgruening

Aufgabe
Gegeben sind acht Wertepaare aus einer Gauß-Verteilten Grundmenge.

a) Schätzen Sie die Parameter [mm] \mu [/mm] und sigma der Gauß-Funktion
b) Ermitteln Sie die "besten" Parameter nach der Methode der kleinsten Fehlerquadrate


x      y
150 888
151,8 854
154,8 1648
156,2 2261
157,2 2105
159 1455
160,8 1018
162,8 942

Hallo Leute, hab da ein Problem mit einer Aufgabe aus einer alten Statistik-Klausur. Es sind acht Wertepaare gegeben, die eine repräsentative Stichprobe aus einer Gauß-Verteilten Menge entnommen sind. Hat jemand eine Idee? Das Schätzen ist ja nicht so schlimm, aber Teilaufgabe b) macht mir Probleme...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gaussparameter: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Di 08.04.2008
Autor: Martinius

Hallo,

deine Gauß-Funktion heißt ja

$f(x) = [mm] \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]

Daraus bildest Du nun deine Funktion der kleinsten Fehlerquadrate:

$S = [mm] \sum_{i=1}^{8} (y_i [/mm] - [mm] f(x_i))^2 [/mm] = [mm] \sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)^2$ [/mm]

Diese Funktion musst Du nun partiell nach [mm] $\sigma$ [/mm] und [mm] $\mu$ [/mm] ableiten und diese Ableitungen gleich Null setzen. Aus diesen Bedingungen erhältst Du dann dein [mm] $\sigma$ [/mm] und dein [mm] $\mu$. [/mm]


Ich mache es dir einmal für einen Parameter vor:


[mm] $\bruch{\partial S}{\partial \mu} [/mm] = [mm] 2*\sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(-\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(-\bruch{x_i-\mu}{\sigma} \right)*\left(\bruch{-1}{\sigma} \right)= [/mm] 0$

Wenn Du dir nun überlegst, welcher der Faktoren denn Null werden kann, kommst Du auf:

[mm] $\sum_{i=1}^{8}\left(\bruch{x_i-\mu}{\sigma} \right) [/mm] = 0$

, was bedeutet

[mm] $\sum_{i=1}^{8}x_i [/mm] = [mm] \sum_{i=1}^{8}\mu [/mm] = [mm] 8*\mu$ [/mm]

, also

[mm] $\mu [/mm] = [mm] \bruch{1}{8}\sum_{i=1}^{8}x_i [/mm] = 156,575$


Bei der Ableitung nach dem Parameter [mm] $\sigma$ [/mm] musst Du neben der Kettenregel auch die Produktregel benutzen:

[mm] $\bruch{\partial S}{\partial \sigma} [/mm] = [mm] 2*\sum_{i=1}^{8} \left(y_i - \bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)*\left(\bruch{1}{\wurzel{2\pi}*\sigma^2}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}-\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}*\left(-\bruch{x_i-\mu}{\sigma} \right)*\left(-\bruch{x_i-\mu}{\sigma^2} \right)\right)= [/mm] 0$

D. h., die Ableitung wird Null wenn

[mm] $\sum_{i=1}^{8} \bruch{1}{\sigma^2} [/mm] = [mm] \sum_{i=1}^{8} \bruch{1}{\sigma^4}*(x_i-\mu)^2$ [/mm]

[mm] $\sum_{i=1}^{8} \sigma^2 [/mm] = [mm] \sum_{i=1}^{8} (x_i-\mu)^2$ [/mm]

$8* [mm] \sigma^2 [/mm] = [mm] \sum_{i=1}^{8} (x_i-\mu)^2$ [/mm]

[mm] $\sigma [/mm] = [mm] \wurzel{\bruch{1}{8}*\sum_{i=1}^{8} (x_i-\mu)^2}=4,065$ [/mm]

So ich mich nicht verrechnet habe.

LG, Martinius




P.S. Es wäre eigentlich korrekt, deine Funktion als noch von einem Parameter a abhängig darstellen:

$y(x) = [mm] \bruch{a}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]

Dementsprechend deine Fehlerfunktion:

[mm] $S(\mu, \sigma, [/mm] a) = [mm] \sum_{i=1}^{8} (y_i [/mm] - [mm] f(x_i))^2 [/mm] = [mm] \sum_{i=1}^{8} \left(y_i - \bruch{a}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x_i-\mu}{\sigma})^2}\right)^2$ [/mm]

Wenn Du noch den Parameter a ermitteln willst, leitest Du wie gehabt partiell nach a ab und erhältst dann

$y(x) [mm] \approx 21101*\bruch{1}{\wurzel{2\pi}*\sigma}*e^{-\bruch{1}{2}*(\bruch{x-\mu}{\sigma})^2}$ [/mm]




Bezug
                
Bezug
Gaussparameter: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Mi 09.04.2008
Autor: chrisgruening

Vielen DANK für die schnelle Antwort!!! Das hilft mir doch schonmal sehr weiter :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de