www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Gebroch.rat. Funktion vereinf.
Gebroch.rat. Funktion vereinf. < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebroch.rat. Funktion vereinf.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 12.02.2009
Autor: Sebban

Aufgabe
[mm] (3*x^2-3*x) [/mm] / [mm] (x-2)^2 [/mm]

Ich soll eine Kurvendiskussion zu dieser gebrochen rationalen Funktion erstellen.

Bei der Differentialrechnung viel mir jedoch auf, dass die Anwendung der Quotientenregel, ohne vorheriges vereinfachen des Terms zu einer sehr umfangreichen Ableitung führt. (Was die Extremstellenberechnung verkompliziert und schnell für Flüchtigkeitsfehler sorgen kann)

Ich habe es selbst nicht geschafft die Funktion zu vereinfachen. Letzte Stunde lernte unser Kurs die Linearfaktorzerlegung. Da ich dort nicht anwesend war bin ich mir nicht sicher ob ich eine Vereinfachungsmöglichkeit übersehen habe.

Durch ausklammern komme ich hier nicht zu Faktoren, die sich wegkürzen ließen. Und die Polynome von Zähler und Nenner gleichen sich auch nicht. Schlichte Polynomdivision ist (glaube ich) auch nicht durchführbar.

Habe ich also etwas übersehen oder muss ich einfach die Quotientenregel anwenden und mit den komplexen Ableitungen weiterrechnen. (Bei denen muss in meiner Rechnung bereits an einer Stelle ein Vorzeichenfehler vorliegen [kontrolliert mit Winplot])

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gebroch.rat. Funktion vereinf.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 12.02.2009
Autor: schachuzipus

Hallo Sebban und herzlich [willkommenmr],

> [mm](3*x^2-3*x)[/mm] / [mm](x-2)^2[/mm]
>  Ich soll eine Kurvendiskussion zu dieser gebrochen
> rationalen Funktion erstellen.
>  
> Bei der Differentialrechnung viel mir jedoch auf, dass die
> Anwendung der Quotientenregel, ohne vorheriges vereinfachen
> des Terms zu einer sehr umfangreichen Ableitung führt. (Was
> die Extremstellenberechnung verkompliziert und schnell für
> Flüchtigkeitsfehler sorgen kann)

Das ist leider so :-)

>  
> Ich habe es selbst nicht geschafft die Funktion zu
> vereinfachen. Letzte Stunde lernte unser Kurs die
> Linearfaktorzerlegung. Da ich dort nicht anwesend war bin
> ich mir nicht sicher ob ich eine Vereinfachungsmöglichkeit
> übersehen habe.
>  
> Durch ausklammern komme ich hier nicht zu Faktoren, die
> sich wegkürzen ließen.

Ich auch nicht, du kannst den Zähler zwar schreiben als [mm] $3x\cdot{}(x-1)$, [/mm] aber so richtig hilft das nicht

> Und die Polynome von Zähler und
> Nenner gleichen sich auch nicht. Schlichte Polynomdivision
> ist (glaube ich) auch nicht durchführbar.

Kannst du machen, hilft aber auch nicht so sehr

>  
> Habe ich also etwas übersehen oder muss ich einfach die
> Quotientenregel anwenden und mit den komplexen Ableitungen
> weiterrechnen. (Bei denen muss in meiner Rechnung bereits
> an einer Stelle ein Vorzeichenfehler vorliegen
> [kontrolliert mit Winplot])

So "schlimm" sind die Ausdrücke, die du mit der Quotientenregel erhältst, gar nicht, achte nur darauf, im Zähler, den du da erhältst, nicht bedenkenlos auszumultiplizieren!

Du kannst immer den Nennerterm (in einer gewissen Potenz) ausklammern und kürzen, so dass sich die Potenz im Nenner bei jeder Ableitung immer nur um 1 erhöht.

Ich mach das mal, dann siehst du konkret, was ich meine

[mm] $f(x)=\frac{3x^2-3x}{(x-2)^2}$ [/mm]

[mm] $\Rightarrow f'(x)=\frac{(6x-3)\cdot{}\blue{(x-2)}^2-\left[(3x^2-3x)\cdot{}2\cdot{}\blue{(x-2)}^1\right]}{(x-2)^4}$ [/mm]

Nun, wie gesagt, nicht wild ausmultiplizieren, sondern schön [mm] $\blue{(x-2)}$ [/mm] ausklammern

[mm] $=\frac{\blue{(x-2)}\cdot{}\left((6x-3)\cdot{}(x-2)-2\cdot{}(3x^2-3x)\right)}{(x-2)^4}$ [/mm]

Nun schön kürzen und dann vereinfachen im Zähler (ausmultiplizieren und zusammenfassen ...)

Mache das mal und rechne auch mal die 2.Ableitung zur Übung auf diese Weise aus ...

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Gebroch.rat. Funktion vereinf.: Fehler gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Do 12.02.2009
Autor: Sebban

Meine Ableitung war also schon richtig. Ich hatte bereits nachdem Verfahren:

(u'*v) / [mm] (v^2) [/mm] - (u*v') / [mm] (v^2) [/mm]

gekürzt.

Meine Nullstellenberechnung der Ableitung jedoch nicht. Aber ich habe den Vorzeichenfehler jetzt gefunden. Ich hatte einen Vorzeichenwechsel beim multiplizieren mit dem Nenner nicht beachtet.

Dann werde ich jetzt mal weiterschauen, ob meine 2. Ableitung auch richtig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de