www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Geburtstage
Geburtstage < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 14.08.2012
Autor: Kuriger

Wie gross ist die Wahrscheinlichkeit, dass von 10 Leuten mindestens 2 am gleichen Tag Geburtstag haben?


Ich rechne nun mal die Anzahl Möglichkeiten, dass unter 10 Leute jeder an einem anderen Tag Geburtstag hat.

.Dies ist doch eine "Kombination"? Reihenfolge ist egal,
Doch wie kann ich das berechnen? Ich dachte so: [mm] \vektor{365 \\ 10} [/mm] = 1.0213 * [mm] 10^{19} [/mm]

Ist doch das gleiche wie beim Lotto spielen, wo ich aus 45 Zahlen 6 nehmen muss, dort gibt es dann [mm] \vektor{45 \\ 6} [/mm] = 8145060 Möglichkeiten


Und dann die Anzahl möglichen Geburtstagskombinationen (Kombination mit Wiedehrolung)
[mm] \vektor{365 + 10 -1\\ 10} [/mm] = 1.3069* [mm] 10^{19} [/mm]
Das heisst, die Wahrscheinlichkeit, dass alle an einem anderen Tag Geburtstag haben ist: 1.0213 * [mm] 10^{19} [/mm] : 1.3069* [mm] 10^{19} [/mm] = 0.781

Und entsprechend die Gegenwahrscheinlichkeit 1 - 0.781 = 0.219

Aber ja stimmt wohl nicht


        
Bezug
Geburtstage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Di 14.08.2012
Autor: ms2008de

Hallo,
> Wie gross ist die Wahrscheinlichkeit, dass von 10 Leuten
> mindestens 2 am gleichen Tag Geburtstag haben?
>  
>
> Ich rechne nun mal die Anzahl Möglichkeiten, dass unter 10
> Leute jeder an einem anderen Tag Geburtstag hat.
>  
> .Dies ist doch eine "Kombination"? Reihenfolge ist egal,
> Doch wie kann ich das berechnen? Ich dachte so: [mm]\vektor{365 \\ 10}[/mm]
> = 1.0213 * [mm]10^{19}[/mm]
>  
> Ist doch das gleiche wie beim Lotto spielen, wo ich aus 45
> Zahlen 6 nehmen muss, dort gibt es dann [mm]\vektor{45 \\ 6}[/mm] =
> 8145060 Möglichkeiten
>  
>
> Und dann die Anzahl möglichen Geburtstagskombinationen
> (Kombination mit Wiedehrolung)
>  [mm]\vektor{365 + 10 -1\\ 10}[/mm] = 1.3069* [mm]10^{19}[/mm]
>  Das heisst, die Wahrscheinlichkeit, dass alle an einem
> anderen Tag Geburtstag haben ist: 1.0213 * [mm]10^{19}[/mm] :
> 1.3069* [mm]10^{19}[/mm] = 0.781
>  
> Und entsprechend die Gegenwahrscheinlichkeit 1 - 0.781 =
> 0.219
>  
> Aber ja stimmt wohl nicht
>  

Gut erkannt^^. Also das Problem ist folgendes: Bei deiner Formel ohne Berücksichtigung der Reihenfolge mit Wiederholung sind nicht alle Möglichkeiten automatisch auch gleich wahrscheinlich. Ich machs dir anhand deines Beispiels mit Lotto 6 aus 45 mit Zurücklegen klar: Da gäb es unter den Möglichkeiten eine bei der 6-mal die Zahl 1 gezogen wird, aber genauso auch eine bei der die Zahlen 1,2,3,4,5 und 6 gezogen werden. Letzteres kann aber auf verschiedene Arten erfolgen, zum Beispiel könnte hier auch die Ziehung lauten 6,3,4,5,2,1 und somit gibts hier insgesamt 6!=720 Möglichkeiten die Zahlen 1,2,3,4,5,6 zu ziehen, aber nur eine Möglichkeit 1,1,1,1,1,1 zu ziehen. Von daher empfiehlt es sich bei dem Geburtstagsproblem stattdessen mit Berücksichtigung der Reihenfolge über das Gegenereignis zu rechnen, so überlegt man sch folgendes:
Jeder der 10 Personen kann an 365 Tagen Geburtstag haben, macht [mm] 365^{10} [/mm] Möglichkeiten. Und die Anzahl Möglichkeiten, dass 10 Personen an verschiedenen Tagen Geburtstag haben, lautet 365*364*363*...*357*356= [mm] \bruch{365!}{355!} [/mm] ( Für die erste Person kommen 365 Tage in Frage, für die 2. noch 364 usw.)
Den Rest schaffst du alleine.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de