www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Geburtstagsproblem
Geburtstagsproblem < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 26.02.2006
Autor: Phoney

Hallo.

Es soll ausgerechnet werden, wie hoch die Wahrscheinlichkeit ist, dass von 5 Leuten zwei am selben Tag Geburtstag haben.

Wieso kann ich die Formel von  []Wikipedia nicht benutzen?

p= [mm] \bruch{365!}{(365-5)!*365^5} [/mm] = 0,027 = 2,7%

Die Lösung für das Problem ist jedoch 0,0027 = 0,27%.

$p =  [mm] \bruch{365}{365}* \bruch{1}{365}* \bruch{364}{365}* \bruch{363}{365}* \bruch{362}{365}$ [/mm]

Wieso darf ich also die Formel von Wikipedia nicht nehmen?

Danke,
Gruß Phoney


        
Bezug
Geburtstagsproblem: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:28 So 26.02.2006
Autor: informix

Hallo Phoney,
>  
> Es soll ausgerechnet werden, wie hoch die
> Wahrscheinlichkeit ist, dass von 5 Leuten zwei am selben
> Tag Geburtstag haben.
>  
> Wieso kann ich die Formel von  
> []Wikipedia
> nicht benutzen?
>  
> p= [mm]\bruch{365!}{(365-5)!*365^5}[/mm] = 0,027 = 2,7%

du darfst die Formel benutzen, solltest aber genau überlegen, was du damit ausrechnest!

In Wikipedia steht:
Damit ergibt sich die Wahrscheinlichkeit von
    [mm] $\frac{u}{m} [/mm] = [mm] \frac{365!}{(365-n)!\cdot365^n}$ [/mm]
dass alle n Personen an unterschiedlichen Tagen Geburtstag haben.


Du berechnest also den Fall, dass alle 5 Personen an unterschiedlichen Tagen Geburtstag haben mit p=2,7%.
Das Gegenereignis beschreibt den Fall, dass nicht alle an verschiedenen Tagen Geburtstag haben, dass also mind. zwei am gleichen Tag Geburtstag haben:
$1 - [mm] \frac{365!}{(365-n)!\cdot365^n}$ [/mm]

>  
> Die Lösung für das Problem ist jedoch 0,0027 = 0,27%.

Diese Lösung scheint mir zu einem wiederum anderen Problem zu gehören:
genau zwei Personen sollen am selben Tag Geburtstag haben:
also zwei am selben Tag und die anderen an anderen Tag.

>  
> [mm]p = \bruch{365}{365}* \bruch{1}{365}* \bruch{364}{365}* \bruch{363}{365}* \bruch{362}{365}[/mm]
>  
> Wieso darf ich also die Formel von Wikipedia nicht nehmen?

Lies noch einmal genau, was dort steht.

Du musst noch einen Schritt weiter denken.

Gruß informix


Bezug
                
Bezug
Geburtstagsproblem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mo 27.02.2006
Autor: Phoney

Hi und Dankeschön. Aber die Aufgabe knicke ich erst einmal... Ist wohl vom schwierigerem Typ und zu zeitaufwändig... Wenn man noch nicht einmal das Grundprinzip verstanden hat, soll man sich ja nicht überanstrengen.
Aber irgendwann komme ich noch mal auf die Antwort zurück und werds bestimmt verstehen.

Grüße Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de