www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Gedächtnislosigkeit der Expv-
Gedächtnislosigkeit der Expv- < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gedächtnislosigkeit der Expv-: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Fr 24.08.2007
Autor: MausMaeusezahn

Aufgabe
(a) Weisen Sie nach, dass für eine Expv ZVgröße gilt:
P(X> s+t| X>s)= P(X>t) für alle s,t [mm] \geq [/mm] 0

(b) Es sei X eine pos. reellwertige Zvgröße, die der Gleichung in (a) genügt. Zeigen Sie, dass die Funktion h(t) := P(X>t) folgender Gleichung genügt:
h(t+s) = h(t) h(s).

(c) Zeigen Sie dass die einzige rechttstetige Fkt. h die der Gleichung in (b) genügt die Exponentialfunktion ist.

(d) Zeigen Sie mittels a-c folgende Aussage:
Eine pos. reellwertige ZVröße ist genau dann expverteilt, falls sie der Gleichung in (a) genügt.

Hallo nochmal,

ich hab Teilaufgabe (a) und (b) gezeigt, komme mit (c) aber nicht weiter. Wie kann ich zeigen, dass die Expfunktion die einzige rechtsstetige Fkt ist für die das gilt????

Wär super, wenn ihr mir helfen könntet.

Mfg [mm] M^2 [/mm]

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gedächtnislosigkeit der Expv-: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Fr 24.08.2007
Autor: Somebody


> (a) Weisen Sie nach, dass für eine Expv ZVgröße gilt:
>  P(X> s+t| X>s)= P(X>t) für alle s,t [mm]\geq[/mm] 0

>  
> (b) Es sei X eine pos. reellwertige Zvgröße, die der
> Gleichung in (a) genügt. Zeigen Sie, dass die Funktion h(t)
> := P(X>t) folgender Gleichung genügt:
>  h(t+s) = h(t) h(s).
>  
> (c) Zeigen Sie dass die einzige rechttstetige Fkt. h die
> der Gleichung in (b) genügt die Exponentialfunktion ist.
>  
> (d) Zeigen Sie mittels a-c folgende Aussage:
>  Eine pos. reellwertige ZVröße ist genau dann expverteilt,
> falls sie der Gleichung in (a) genügt.
>  Hallo nochmal,
>  
> ich hab Teilaufgabe (a) und (b) gezeigt, komme mit (c) aber
> nicht weiter. Wie kann ich zeigen, dass die Expfunktion die
> einzige rechtsstetige Fkt ist für die das gilt????

Sei [mm] $h_0 [/mm] := h(0)$. Zeige zuerst, dass aus der Gleichung folgt, dass [mm] $h(t)=h_0^t$, [/mm] für alle [mm] $t\in \IN$. [/mm] Zeige dann, dass [mm] $h(t)=h_0^t$, [/mm] für alle [mm] $t\in \IZ$. [/mm] Zeige zudem, dass [mm] $h(t)=h_0^t$, [/mm] für alle [mm] $t\in \IQ$. [/mm] Zeige schliesslich, dass aus der rechtseitigen Stetigkeit von $h$ folgt, dass [mm] $h(t)=h_0^t$, [/mm] für alle [mm] $t\in \IR$. [/mm]


Bezug
                
Bezug
Gedächtnislosigkeit der Expv-: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Sa 25.08.2007
Autor: MausMaeusezahn

Hallo Somebody,
danke für die Hilfestellung. Ich versteh aber noch nicht, wenn ich das alles gezeigt habe, wie kannich dann auf die e-funktion schließen?
`
Viele Grüße,
[mm] M^2 [/mm]

Bezug
                        
Bezug
Gedächtnislosigkeit der Expv-: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 So 26.08.2007
Autor: Somebody


> Hallo Somebody,
>  danke für die Hilfestellung. Ich versteh aber noch nicht,
> wenn ich das alles gezeigt habe, wie kannich dann auf die
> e-funktion schließen?

Alleine aufgrund der Gleichung [mm] $h(t+s)=h(t)\cdot [/mm] h(s)$ kann man dies natürlich nicht schliessen. Denn jede Funktion [mm] $h:t\mapsto h_0^t$ [/mm] (mit [mm] $h_0>0$), [/mm] erfüllt diese Gleichung und ist stetig. Man kann allenfalls den Aufgabentext etwas liberaler interpretieren: dass zu zeigen sei, dass $h$ (nicht die, sondern) eine Exponentialfunktion ist.


Bezug
                                
Bezug
Gedächtnislosigkeit der Expv-: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Di 28.08.2007
Autor: MausMaeusezahn

Hi Somebody,

okay, danke für deine Erklärungen!

Viele Grüße,
[mm] M^2 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de