Gegenseitige Lage von Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:59 Do 29.01.2015 | Autor: | abi15 |
Aufgabe | Gegeben sind drei Ebenen E1, E2 und E3. Prüfe ob die Ebenen zueinander parallel sind bzw. ob sie gleich sind.
E1: 6 [mm] \times [/mm] x + 3 [mm] \times [/mm] y - 9 [mm] \times [/mm] z = 15
E2: -2 [mm] \times [/mm] x - y + 3 [mm] \times [/mm] z = -5
E3: 4 [mm] \times [/mm] x + 2 [mm] \times [/mm] y + 6 [mm] \times [/mm] z = 5 |
Hallo, hierbei habe ich zuerst die Normalenvektoren auf Linearität überprüft und dann geguckt ob die Ds der Gleichungen Vielfache voneinander sind. Bei E1 und E2 hat das auch geklappt und ich bin auf Parallelität gekommen. Bei E1 und E3 sowie E2 und E3 kommt bei mir allerdings Schnitt raus, aber aus der Aufgabenstellung geht hervor, dass das falsch sein muss.
E1 und E2:
[mm] \vmat{ 6 = -2 \times k \\ 3 = (-1) \times k \\ -9 = 3 \times k } [/mm] --> [mm] \vmat{ k = -3 \\ k = -3 \\ k= -3 }
[/mm]
15 = l [mm] \times [/mm] (-5) | :(-5)
3 = l
3 [mm] \pm [/mm] -3 --> Parallelität
E1 und E3:
[mm] \vmat{ 6 = 4 \times k \\ 3 = 2\times k \\ -9 = 6 \times k } [/mm] --> [mm] \vmat{ k = 3/2 \\ k = 3/2 \\ k = - 3/2 }
[/mm]
Bei E2 und E3 habe ich für k ebenfalls den gleichen Wert mit verschiedenen Vorzeichen raus.
Somit sind die Normalenvektoren keine Vielfache voneinander und schneiden sich. Was mache ich falsch? Oder habe ich einen Denkfehler und sie sind doch Vielfache, obwohl die Vorzeichen verschieden sind?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:10 Do 29.01.2015 | Autor: | abakus |
> Gegeben sind drei Ebenen E1, E2 und E3. Prüfe ob die
> Ebenen zueinander parallel sind bzw. ob sie gleich sind.
> E1: 6 [mm]\times[/mm] x + 3 [mm]\times[/mm] y - 9 [mm]\times[/mm] z = 15
> E2: -2 [mm]\times[/mm] x - y + 3 [mm]\times[/mm] z = -5
> E3: 4 [mm]\times[/mm] x + 2 [mm]\times[/mm] y + 6 [mm]\times[/mm] z = 5
>
> Hallo, hierbei habe ich zuerst die Normalenvektoren auf
> Linearität überprüft und dann geguckt ob die Ds der
> Gleichungen Vielfache voneinander sind. Bei E1 und E2 hat
> das auch geklappt und ich bin auf Parallelität gekommen.
> Bei E1 und E3 sowie E2 und E3 kommt bei mir allerdings
> Schnitt raus, aber aus der Aufgabenstellung geht hervor,
> dass das falsch sein muss.
Hallo,
wenn du die Gleichung von E2 mit (-3) multiplizierst, bekommst du eine zu E1 IDENTISCHE Gleichung.
E3 hat einen anderen Normalenvektor und schneidet E1 (und schneidet damit auch E2.
Wenn die Musterlösung was anderes sagt ist sie falsch (oder in einer Ebenengleichung wurde ein + mit einem - verwechselt).
>
> E1 und E2:
> [mm]\vmat{ 6 = -2 \times k \\ 3 = (-1) \times k \\ -9 = 3 \times k }[/mm]
> --> [mm]\vmat{ k = -3 \\ k = -3 \\ k= -3 }[/mm]
> 15 = l [mm]\times[/mm]
> (-5) | :(-5)
> 3 = l
> 3 [mm]\pm[/mm] -3 --> Parallelität
>
> E1 und E3:
>
> [mm]\vmat{ 6 = 4 \times k \\ 3 = 2\times k \\ -9 = 6 \times k }[/mm]
> --> [mm]\vmat{ k = 3/2 \\ k = 3/2 \\ k = - 3/2 }[/mm]
>
> Bei E2 und E3 habe ich für k ebenfalls den gleichen Wert
> mit verschiedenen Vorzeichen raus.
>
> Somit sind die Normalenvektoren keine Vielfache voneinander
> und schneiden sich. Was mache ich falsch? Oder habe ich
> einen Denkfehler und sie sind doch Vielfache, obwohl die
> Vorzeichen verschieden sind?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:19 Do 29.01.2015 | Autor: | abi15 |
Hallo, danke für die Antwort! :)
Ich habe einen Vorzeichenfehler in meiner Rechnung zu E1 und E2 entdeckt, jetzt komme ich auch auf Identität.
LG
|
|
|
|