www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Gegenstände der größe Pi
Gegenstände der größe Pi < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gegenstände der größe Pi: paradigma,pi
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 10.11.2010
Autor: kriskra

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In einer Vorlesung kam mir die Frage auf, ob es ein Reales-Objekt (einen Gegenstand) geben kann, der die reale Länge Pi hat, wenn man davon ausgeht das die länge von Pi unendlich ist?

So müsste auch jeder Mensch der ja kontinuierlich wächst in seinem Leben zumindest kurz die größe Pi/2 erreichen. Jedoch ist die Länge von Pi unendlich und wir können davon ausgehen das jede reelle Maßeinheit immer echt größer 0 ist und irgentwann unteilbar wird. Kann somit eine Person oder irgentein Gegenstand die Größe Pi/2 erreichen?

Grüße,
Kristian

        
Bezug
Gegenstände der größe Pi: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Mi 10.11.2010
Autor: reverend

Hallo Kristian, [willkommenmr]

das klingt ziemlich kraus. Was ist ein "Reales-Objekt" in Großschreibung und mit Bindestrich? Und soll Pi [mm] \pi [/mm] sein, die Ludolfsche Zahl oder Kreiszahl? Die ist nicht unendlich.

Im Zweifelsfall kannst Du aber Deine aktuelle Größe genauso beibehalten und trotzdem die Größe [mm] \pi [/mm] oder wahlweise [mm] \tfrac{\pi}{2} [/mm] haben, wenn Du nur eine entsprechende Längeneinheit definierst.

Übrigens wächst kein Mensch kontinuierlich in seinem Leben, es sei denn, er stirbt vor Abschluss der Wachstumsphase. Selbst dann ist das Wort "kontinuierlich" noch definitionsbedürftig und bedeutet wohl das, was in der Analysis "monoton steigend" heißt.

Grüße
reverend

Bezug
                
Bezug
Gegenstände der größe Pi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Fr 12.11.2010
Autor: kriskra

Hallo Reverend,

vielen Dank für deine Antwort. Ich denke ich muss mich für die ungenaue Definition entschuldigen. Wie Al-Chwarizm richtig angenommen hat, habe ich mich wirklich auf einen Gegenstand der realen Welt (siehe Beispiel: Gummiband) bezogen.

Trotzdem vielen Dank & Grüße,
Kristian

Bezug
        
Bezug
Gegenstände der größe Pi: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Mi 10.11.2010
Autor: Al-Chwarizmi


> In einer Vorlesung kam mir die Frage auf, ob es ein
> Reales-Objekt (einen Gegenstand) geben kann, der die reale
> Länge Pi hat, wenn man davon ausgeht das die länge von Pi
> unendlich ist?
>  
> So müsste auch jeder Mensch der ja kontinuierlich wächst
> in seinem Leben zumindest kurz die größe Pi/2 erreichen.
> Jedoch ist die Länge von Pi unendlich und wir können
> davon ausgehen das jede reelle Maßeinheit immer echt
> größer 0 ist und irgentwann unteilbar wird. Kann somit
> eine Person oder irgentein Gegenstand die Größe Pi/2
> erreichen?
>  
> Grüße,
>  Kristian


Hallo Kristian,

du benützt den Begriff "Länge" in zwei sehr unterschiedlichen
Bedeutungen, nämlich einerseits für die Länge eines materiellen
Objekts, gemessen z.B. in der Maßeinheit Meter, und andererseits
für die Länge der Dezimalentwicklung der Kreiszahl π . Letztere
ist tatsächlich unendlich - dies bedeutet aber keineswegs, dass
π eine unendliche Zahl sei. Bekanntlich liegt der Wert von π
zwischen 3 und 4 und ist damit durchaus endlich.

In der Geometrie kommt π in exakter Form vor: Ein Kreis mit
Durchmesser 1 hat einen Umfang der Länge π .

In der Welt der Gegenstände sind jedoch Messungen immer
irgendwie problematisch in dem Sinne, dass Exaktheit im
streng mathematischen Sinn praktisch unmöglich ist.
Gerade etwa die Körperlänge einer Person ist ein Beispiel
einer jedenfalls nur ungenau messbaren Größe. Nehmen
wir also lieber als Beispiel die Länge eines Gummibandes,
das in einer dazu gefertigten Apparatur "stetig" gestreckt
wird. Zu Beginn habe das Band z.B. die Länge von 2 dm .
Nun wird es gestreckt und erreicht irgendwann die Längen
2.5 dm , 3 dm , 3.5 dm, 4 dm. Schon eine "exakte" Messung
dieser Längen ist natürlich im praktischen Sinne eine
eigentlich unmögliche Aufgabe.
Da π zwischen 3 und 3.5 liegt, kann man im Sinne der
Stetigkeit aus der Analysis natürlich sagen: bei dem
Streckvorgang des Gummibandes muss dieses zu einem
gewissen Zeitpunkt auch exakt die Länge  π dm  gehabt
haben. Dies ist aber eine Aussage, die sich nur auf das
abstrakte Konstrukt der reellen Zahlen bezieht. Ob sich
die physikalische (objektive) Realität aber damit 1:1
vergleichen lässt, ist eine ganz andere Frage, mit der
sich auch schon Philosophen des griechischen Altertums,
darunter insbesondere []Zenon von Elea beschäftigt haben.

In der heutigen Physik benützt man die reellen Zahlen
natürlich in sehr vielfältiger Weise. Doch jeder theoretische
Physiker würde zumindest hinter die These Isaac Newtons,
dass die physikalischen Vorgänge in einem "absoluten Raum"
stattfinden, der (heute würden wir es so sagen) dem [mm] \IR^3 [/mm]
entspricht, zumindest ein dickes Fragezeichen setzen.
Da nach heutigem Wissen die physikalische Welt im ganz
Kleinen durch Quantenphysik beschrieben werden muss,
verlieren da wohl auch die Gesetze, mit denen wir die
Physik in "normalen" Größenordnungen hervorragend be-
schreiben können, ihre Gültigkeit. Und damit bleibt wohl
die Vorstellung eines Gummibandes, das zu einem Zeitpunkt
"exakt" die Länge  π dm  hat, eine Idee ohne objektive
Realität - allerdings ebenso die Idee eines Gummibandes
mit der exakten Länge 3 dm !

LG     Al-Chw.

Bezug
                
Bezug
Gegenstände der größe Pi: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Fr 12.11.2010
Autor: kriskra

Hallo Al-Chwarizmi,

vielen Dank für diese ausführliche und sehr interessante Erläuterung.

Viele Grüße,
Kristian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de