www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Gegns.Lage e.Geraden u.e.Ebene
Gegns.Lage e.Geraden u.e.Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gegns.Lage e.Geraden u.e.Ebene: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 17:14 Mi 16.04.2008
Autor: Isaak

Aufgabe
2. Die Gerade g schneidet die Ebene E. Berechnen Sie die Koordinaten des Durchstoßpunktes.

[mm] d)g:\vec{x} [/mm] = [mm] \pmat{ 2 \\ 0 \\3 } [/mm] + [mm] t*\pmat{ 5 \\ 1 \\1 }, [/mm] E: [mm] \vec{x} [/mm] = [mm] \pmat{ 1 \\ 0 \\0 } [/mm] + [mm] s*\pmat{ 0 \\ 1 \\1 } [/mm] +  [mm] t*\pmat{ 1 \\ 0 \\1 } [/mm]


Hallo,

mir ist ganz klar, dass dieses Forum nicht zu einem einfachen "Hausaufgaben machen/lösen lassen"-Forum verkommen soll, man soll ja auch was lernen, jedoch kann ich wohl seit heute vollständig auf die Hilfe meiner Mathe/Physik-Lehrerin verzichten.
Denn anscheinend fand sie es nicht besonders gut von meiner Seite her, einen anderen Lösungsweg für die letzte Hausaufgabe zu wählen (obwohl dieser mir verständlicher war, als der ihrige), als den, den sie gewählt hatte. Im Klartext hat sie mir heute verweigert zu meiner/-m Lösung/-weg Hilfestellung zu geben.
(->Mir war ein kleiner Rechenfehler unterlaufen, denn einer der Richtungsvektoren lautet nämlich richtig [mm] \pmat{ 5 \\ -7 \\12 } [/mm] nicht [mm] \pmat{ 5 \\ -7 \\"10" }) [/mm]

Wie dem auch sei, zur Aufgabe von oben würde ich gerne von Euch wieder einmal Hilfe einfordern!
Mir ist es soweit geläufig, dass "Geraden" sich dann schneiden, wenn beide Parametergleichungen das selbe Endergebnis haben. Z.B. man nehme an folgende Parametergleichungen wären gleich [mm] \pmat{ 2 \\ 0 \\3 } [/mm] + [mm] t*\pmat{ 5 \\ 1 \\1 } [/mm] = [mm] \pmat{ 1 \\ 0 \\0 } [/mm] + [mm] s*\pmat{ 0 \\ 1 \\1 }! [/mm] Jetzt ist jedoch eine weitere Variable aufgetaucht, wie soll ich nun diese Variable plus Richtungsvektor einbeziehen und rechnen?

mfg Isger

        
Bezug
Gegns.Lage e.Geraden u.e.Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mi 16.04.2008
Autor: MathePower

Hallo Isaak,

> 2. Die Gerade g schneidet die Ebene E. Berechnen Sie die
> Koordinaten des Durchstoßpunktes.
>  
> [mm]d)g:\vec{x}[/mm] = [mm]\pmat{ 2 \\ 0 \\3 }[/mm] + [mm]t*\pmat{ 5 \\ 1 \\1 },[/mm]
> E: [mm]\vec{x}[/mm] = [mm]\pmat{ 1 \\ 0 \\0 }[/mm] + [mm]s*\pmat{ 0 \\ 1 \\1 }[/mm] +
>  [mm]t*\pmat{ 1 \\ 0 \\1 }[/mm]
>
>
> Hallo,
>  
> mir ist ganz klar, dass dieses Forum nicht zu einem
> einfachen "Hausaufgaben machen/lösen lassen"-Forum
> verkommen soll, man soll ja auch was lernen, jedoch kann
> ich wohl seit heute vollständig auf die Hilfe meiner
> Mathe/Physik-Lehrerin verzichten.
>  Denn anscheinend fand sie es nicht besonders gut von
> meiner Seite her, einen anderen Lösungsweg für die letzte
> Hausaufgabe zu wählen (obwohl dieser mir verständlicher
> war, als der ihrige), als den, den sie gewählt hatte. Im
> Klartext hat sie mir heute verweigert zu meiner/-m
> Lösung/-weg Hilfestellung zu geben.
> (->Mir war ein kleiner Rechenfehler unterlaufen, denn einer
> der Richtungsvektoren lautet nämlich richtig [mm]\pmat{ 5 \\ -7 \\12 }[/mm]
> nicht [mm]\pmat{ 5 \\ -7 \\"10" })[/mm]

>
> Wie dem auch sei, zur Aufgabe von oben würde ich gerne von
> Euch wieder einmal Hilfe einfordern!
>  Mir ist es soweit geläufig, dass "Geraden" sich dann
> schneiden, wenn beide Parametergleichungen das selbe
> Endergebnis haben. Z.B. man nehme an folgende
> Parametergleichungen wären gleich [mm]\pmat{ 2 \\ 0 \\3 }[/mm] +
> [mm]t*\pmat{ 5 \\ 1 \\1 }[/mm] = [mm]\pmat{ 1 \\ 0 \\0 }[/mm] + [mm]s*\pmat{ 0 \\ 1 \\1 }![/mm]
> Jetzt ist jedoch eine weitere Variable aufgetaucht, wie
> soll ich nun diese Variable plus Richtungsvektor
> einbeziehen und rechnen?

Benenne eben diesen Paramter für diesen Richtungsvektor um:

[mm] \pmat{ 2 \\ 0 \\3 } $ + $ t\cdot{}\pmat{ 5 \\ 1 \\1 } = \pmat{ 1 \\ 0 \\0 } + s\cdot{}\pmat{ 0 \\ 1 \\1 } + \blue{u}\cdot{}\pmat{ 1 \\ 0 \\1 } [/mm]

>  
> mfg Isger

Gruß
MathePower

Bezug
                
Bezug
Gegns.Lage e.Geraden u.e.Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Mi 16.04.2008
Autor: Isaak

Aufgabe
Meine Rechnung ergibt die Werte t=0,4 , s=0,4 und u=3 , der Punkt an dem sich die Gerade mit der Ebene trifft, wäre daher der Punkt [mm] \pmat{ 4 \\ 0,4 \\ 3,4 }! [/mm] Ist das korrekt?!

hey,

das mit dem Umbenennen der Variabel hatte ich mir schon "fast" gedacht. ;) Trotzdem danke für deine Hilfe.

mfg Isger

Bezug
                        
Bezug
Gegns.Lage e.Geraden u.e.Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mi 16.04.2008
Autor: zahllos

Hallo Isger,

deine Lösung stimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de