www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Gelenkstellung eines Roboters
Gelenkstellung eines Roboters < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gelenkstellung eines Roboters: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Sa 19.11.2011
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]


Hallo, ich hoffe mal ich bin in diesem Unterforum richtig.

Folgende Aufgabe möchte ich gerne lösen: Ich habe die Werte von x,y und z, sowie l1 und l2 gegeben. Das z wird allerdings von der Hüfte aus gemessen (also in dem Punkt ganz unten ist z=-l1-l2 (x=y=0)). Gesucht ist eine Beschreibung der Drehwinkel q1, q2 und q3 in Abhängigkeit der bekannten Werte. q2 und q3 habe ich wohl schon korrekt bestimmt (jedenfalls stimmen meine ersten Tests). Wobei es ja eigentlich für jeden Punkt zwei Lösungen geben müsste (Oberschenkel nach oben und nach unten quasi). Eine Lösung reicht mir allerdings auch erst mal fröhlich.

Hier mal der Matlab-Teil von q2 und q3:

test = [mm] acos((1/(2*l1*l2))*(l1^2+l2^2-d^2)); [/mm]
q(3) = [mm] \pi [/mm] - test;
q(2) = [mm] \asin(y/(l1+l2*\cos(q(3)))); [/mm]

Dabei ist d der Abstand von Hüfte zum Fuß [mm] \sqrt(x^2+y^2+z^2). [/mm] Test wird bestimmt über den Kosinussatz. Bei q1 hatte ich zum Beispiel mal folgenden Ansatz (hatte mehrere, alle funktionieren nicht ^^):

[mm] \sin(q3) [/mm] = ges/l2 => ges = [mm] l2*\sin(q3) [/mm] (also der x-Anteil von q2 sozusagen)
=> q(1) = [mm] \asin((x-l2*sin(q(3))/l1) [/mm]

Hat jemand eine Idee was der richtige Ansatz ist? Mein Ansatz funktioniert wohl nicht weil das Dreieck zwischen Hüfte, Fuß und Knie schräg im Raum liegt und der Anteil den ich da rausbekomme nicht wirklich x ist.

Im zweiten Bild habe ich auch die Vorwärtskinematik gegeben. Man kann das ganze also auch analytisch lösen aber ich glaube das ist dann noch aufwändiger.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Gelenkstellung eines Roboters: Antwort
Status: (Antwort) fertig Status 
Datum: 01:29 So 20.11.2011
Autor: Blech

Hi,

> Das z wird allerdings von der Hüfte aus gemessen (also in dem Punkt ganz unten ist z=-l1-l2 (x=y=0)).

???

Meinst Du damit, daß z nicht das Lot zum Boden ist (dann stimmt aber Dein d nicht)? Oder wirklich nur, daß z negativ statt positiv ist? (definiere: $z':=-z$)

[mm] $q_2=\arctan\left(\frac yz\right)$ [/mm]

Liegt z in der gleichen, um [mm] $q_2$ [/mm] geneigten, Ebene wie das Bein, dann ist es der [mm] $\arcsin$ [/mm] statt des [mm] $\arctan$. [/mm]




Wenn Du jetzt eine Gerade vom Hüftpunkt (A) zum Fußpunkt (B) zeichnest, kriegst Du zusammen mit dem Kniepunkt (C) ein Dreieck, mit Winkeln [mm] $\alpha$, $\beta$, $\gamma$ [/mm] (wie üblich liegt [mm] $\alpha$ [/mm] bei A, etc.) und Seiten a, b, c (a ist die A gegenüberliegende Seite, etc.)


Wir kennen die 3 Seiten:

[mm] $a=l_2$, $b=l_1$, [/mm] $c=d$.


Also folgt mit dem Kosinussatz

[mm] $\cos(\alpha)=\frac{l_1^2-l_2^2 + d^2}{2l_1d}$ [/mm]

und

[mm] $\cos(\beta)=\frac{l_2^2-l_1^2 + d^2}{2l_2d}$ [/mm]




Jetzt gehen wir vom Hüftpunkt (war A) senktrecht runter zum Lotfußpunkt (L) (Länge z, nehm ich an, siehe oben), und dann die Strecke y nach außen zu, nennen wir ihn, Punkt M.
Die Strecke AM ist [mm] $\sqrt{z^2+y^2}$ [/mm] lang. Die Strecke von M nach B (Fußpunkt) ist x, also ist der Winkel zwischen der Geraden AB von oben und AM:

[mm] $\sin(\kappa)=\frac{x}{\sqrt{z^2+y^2}}$ [/mm]



Damit ist

[mm] $q_1=\kappa-\alpha$ [/mm] (wenn wie im Bild das Knie nach hinten genickt ist)
und
[mm] $q_3=\kappa+\beta [/mm] - [mm] q_1=\alpha+\beta$ [/mm]

ciao
Stefan

Bezug
                
Bezug
Gelenkstellung eines Roboters: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:53 So 20.11.2011
Autor: mikemodanoxxx

Hi,

ja z wird einfach nur negativ gemessen. Allerdings funktioniert deine Formel für q2 auch nicht und ich kann mir absolut nicht erklären warum. Was zu funktionieren scheint ist q2 = [mm] \asin(y/(l1+l2*cos(q3))), [/mm] also das was im linken Dreieck für die Länge des Beins eingezeichnet ist. Ich verstehe allerdings auch nicht warum der atan da nicht funktioniert. Der asin den du alternativ vorgeschlagen hast wenn sich die z-Achse mitdreht funktioniert allerdings auch nicht. Die z-Achse ist aber auf jedenfall fest, weil das Basiskoordinatensystem nicht mitgedreht wird.

Deine Formel für q1 stimmt allerdings auch nicht. Ich bekomme bei meinen Testwerten [mm] (q1=q2=q3=\bruch{\pi}{4}) [/mm] für q1 einen imaginären Wert. Irgendwie scheint die Rechnung immer fehlerhaft zu werden wenn man z oder x mit einbringt -.-. Der Wert für q3 stimmt allerdings für die Testwerte..

Zum Testen gebe ich Gelenkwinkel vor und berechne durch Einsetzen die Koordinaten x,y und z. Diese stecke ich dann in meine Gleichungen und schaue ob die gleichen Gelenkwinkel rauskommen. Da die mehrdeutig sind stecke ich das ganze dann noch mal in die Vorwärtskinematik und schaue ob ich wieder bei den gleichen Koordinaten lande. Das sollte eigentlich funktionieren oder?

Bezug
                        
Bezug
Gelenkstellung eines Roboters: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 20.11.2011
Autor: Blech

Hi,

> ja z wird einfach nur negativ gemessen. Allerdings funktioniert deine Formel für q2 auch nicht und ich kann mir absolut nicht erklären warum. Was zu funktionieren scheint ist q2 = $ [mm] \arcsin(y/(l1+l2\cdot{}cos(q3))), [/mm] $ also das was im linken Dreieck für die Länge des Beins eingezeichnet ist.

Dann ist aber das ganze Koordinatensystem Schwachsinn.


[mm] l1+l2\cdot{}cos(q3) [/mm] ist die Länge der Strecke AB.

Die Zeichnung impliziert, daß der Winkel [mm] $q_2$ [/mm] parallel zum Körper liegen soll. Aber kein Problem, könnte ja sein, daß in Wahrheit [mm] $q_2$ [/mm] der Winkel zwischen AB und AL sein soll.

Nur wäre dann die Gegenkathete nicht mehr y (sondern [mm] $\sqrt{y^2+x^2}$). [/mm]

Damit Deine Formel stimmen kann, dürften x-y-z nicht orthogonal zueinander liegen. Nicht nur macht das uns das Leben unnötig kompliziert, wir wissen dann auch nicht, ob uns die anderen eingezeichneten Längen nicht ähnlich verarschen. (wenn y nicht in der Zeichenebene liegt, und x auch nicht, dann könnten x und y theoretisch die gleichen Längen meinen...)


> Ich bekomme bei meinen Testwerten $ [mm] (q1=q2=q3=\bruch{\pi}{4}) [/mm] $ für q1 einen imaginären Wert.

muß [mm] $\tan(\kappa)$ [/mm] statt [mm] $\sin(\kappa)$ [/mm] sein, oder alternativ

[mm] $\sin(\kappa)=\frac{x}{\sqrt{x^2+y^2+z^2}}$ [/mm]

ciao
Stefan

Bezug
                                
Bezug
Gelenkstellung eines Roboters: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mo 21.11.2011
Autor: mikemodanoxxx

Na gut vielen Dank ich warte mal ab wie es in der Musterlösung gelöst wurde und versuche das nachzuvollziehen ^^

Bezug
                        
Bezug
Gelenkstellung eines Roboters: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 22.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de