www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Geltung einer Gleichung
Geltung einer Gleichung < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geltung einer Gleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:25 Fr 13.05.2011
Autor: mobey

Aufgabe
Seien u, v, w Vektoren in R3. Zeigen Sie, dass die Gleichung u · (v × w) = (u × v) · w gilt.

Ich rechne es aus, da kommt bei mir am Ende nicht das Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen raus), aber dann halt nicht an der Stelle, wo sie sein sollten. Wäre sehr dankbar für jede Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 13.05.2011
Autor: Al-Chwarizmi


> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.
>  Ich rechne es aus, da kommt bei mir am Ende nicht das
> Gleiche raus. Zwar kommen die gleichen Buchstaben (Zahlen
> raus), aber dann halt nicht an der Stelle, wo sie sein
> sollten.

Was meinst du mit " nicht an der Stelle, wo sie sein sollten" ?

Nutze die Rechengesetze (Kommutativ- , Assoziativ-
und Distributivgesetz), um die Terme zu ordnen.

LG   Al-Chw.


Bezug
                
Bezug
Geltung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 13.05.2011
Autor: mobey

Ja, dass ich z.b. P (1,2,3) und auf der anderen Seite ist der P (2,3,1) Damit ist es ja nicht bewiesen, dass die eine Formel gleich der anderen ist.

Bezug
                        
Bezug
Geltung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Fr 13.05.2011
Autor: MorgiJL

sorry, antwort falsch eingefügt...siehe die andere antwort von mir, danke.


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Fr 13.05.2011
Autor: MorgiJL

Hey...

also....

> Seien u, v, w Vektoren in R3. Zeigen Sie, dass die
> Gleichung u · (v × w) = (u × v) · w gilt.

Warum Zahlen einsetzen?...das u, v und w sind doch vektoren, also [mm] $\vec{u} [/mm] =  [mm] \vektor{u_1 \\ u_2 \\ u_3 }$, [/mm] analog für [mm] $\vec{v}$ [/mm] und [mm] $\vec{w}$. [/mm]

Jetzt nimmst du einfach die Definitionen fürs Skalarprodukt und Kreuzprodukt und rechnest es aus, dann sollte das gleiche rauskommen.

Grüße!
Jan


Bezug
        
Bezug
Geltung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Fr 13.05.2011
Autor: ullim

Hi,

[mm] u\cdot(v\times{w})=u_x*(v_yw_z-v_zw_y)+u_y*(v_zw_x-v_xw_z)+u_z*(v_xw_y-v_yw_x) [/mm] und

[mm] (u\times{v})\cdot{w}=w_x*(u_yv_z-u_zv_y)+w_y*(u_zv_x-u_xv_z)+w_z*(u_xv_y-u_yv_x) [/mm]

und jetzt beide Ausdrücke vergleichen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de