www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie (Bauer)" - Gemeinsame Wahrscheinlichkeit
Gemeinsame Wahrscheinlichkeit < Wahrscheinlichkeitst < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie (Bauer)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gemeinsame Wahrscheinlichkeit: Inverse einer gemeinsamen Wahr
Status: (Frage) beantwortet Status 
Datum: 15:54 Mo 01.02.2016
Autor: tbbas123

Aufgabe
X und Y seien die zufälligen Wartezeiten [in Minuten] von zwei Kunden A und B, die an
unterschiedlichen Kassen stehen. Wir nehmen an, dass X und Y stochastisch unabhängig
und jeweils exponentialverteilt mit Parameter 0.5 sind.

Wie groß ist die Wahrscheinlichkeit, dass mindestens ein Kunde länger als 4 Minuten warten muss?


Laut Lösung: P(max(X, Y ) > 4) = 1 − P(X ≤ 4, Y ≤ 4) = 1 − P(X ≤ 4) · P(Y ≤ 4)

aus vorherigen Teil erhält man: P(X > 4, Y > 4) = P(X > 4) · P(Y > 4) = e
−4 = 0.018.

Mein Gedanke war es eigentlich mit P(A U B) zu lösen also P(X> 4 U Y>4) da für mich
die inverse der gemeinsamen verteilung keinen Sinn macht. (ich weiß: Denkfehler hier!)
Für mich wäre die Inverse das Ereignis: "beide Kunden müssen länger als 4 Minuten warten"

Kann mir hier jemand auf den Sprung helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gemeinsame Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 01.02.2016
Autor: fred97

Mindestens ein Kunde muss länger als 4 Minuten warten:

X >4 oder Y>4.

Das dazu "inverse" Ereignis: kein Kunde muss länger als 4 Minuten warten, also



X [mm] \le [/mm] 4 und Y [mm] \le [/mm] 4

FRED

Bezug
                
Bezug
Gemeinsame Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 01.02.2016
Autor: tbbas123

@fred : stimme dir zu. Aber erklärt noch nicht die Antwort laut Musterlösung, dass nach deiner

"Das dazu "inverse" Ereignis: kein Kunde muss länger als 4 Minuten warten, also
X $ [mm] \le [/mm] $ 4 und Y $ [mm] \le [/mm] $ 4 "

ist nach Lösung nämlich die Lösung für ein Kunde!

Bezug
                        
Bezug
Gemeinsame Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mo 01.02.2016
Autor: Teufel

Hi!

Was ist jetzt genau die Frage?

Also es gilt
[mm] $\textrm{P}(\max(X,Y)\ge 4)=\textrm{P}(\{X\ge 4\} \cup \{Y\ge 4\})\stackrel{\textrm{DeMorgan}}{=}\textrm{P}((\{X\ge 4\}^c \cap\{Y\ge 4\}^c)^c)=\ldots$. [/mm]

Bezug
                        
Bezug
Gemeinsame Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mo 01.02.2016
Autor: Gonozal_IX

Hiho,

> @fred : stimme dir zu. Aber erklärt noch nicht die Antwort
> laut Musterlösung, dass nach deiner
>
> "Das dazu "inverse" Ereignis: kein Kunde muss länger als 4
> Minuten warten, also
> X [mm]\le[/mm] 4 und Y [mm]\le[/mm] 4 "
>  
> ist nach Lösung nämlich die Lösung für ein Kunde!

Nein. Fred sagt: Die Lösung zu "ein Kunde muss länger als vier Minuten warten" ist das Inverse zu "kein Kunde muss länger als vier Minuten warten".

Und exakt das erhält man auch aus der Musterlösung.

Vielleicht ist dir auch nicht klar, dass gilt: [mm] $\max\{X,Y\} [/mm] > 4 [mm] \quad\gdw\quad [/mm] X>4 [mm] \;\vee\; [/mm] Y>4$

Gruß,
Gono

Bezug
                                
Bezug
Gemeinsame Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 01.02.2016
Autor: tbbas123

Danke erstmal noch für die Antworten!
Die Lösungsmöglichkeit ergibt jetzt für mich Sinn.
Ich denke mir ist noch nicht ganz klar wieso ich
das ganze nicht mit P(X>4 oder Y>4) hätte lösen können.


Bezug
                                        
Bezug
Gemeinsame Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mo 01.02.2016
Autor: Teufel

Hi!

Kannst du doch!

Wenn X>4 oder Y>4, so ist auch deren Maximum >4. Wenn deren Maximum >4 ist, so muss X>4 oder Y>4 sein.

Bezug
                                                
Bezug
Gemeinsame Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Mi 03.02.2016
Autor: tbbas123

Stimmt. Hatte da einen Rechenfehler.
Meine Frage wäre nur noch ein Vorstellungsproblem, dass max(X>4,Y>4) = P(X>4 oder Y<4) entspricht. (versuche es mengentechnisch vorzustellen...klappt aber noch nicht so ganz)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie (Bauer)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de