www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Geometrische Reihe
Geometrische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrische Reihe: Geometrische Summenformel!
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 22.05.2010
Autor: jumper

Aufgabe
Zeigen sie unter Verwenduntg der Geometrischen Summenformel
(a)Die Zahl [mm] 14^{2006}-1 [/mm] ist durch 13 teilbar

Die Frage ist genau so geschrieben!
Was ist hier mit [mm] 14^{2006}-1 [/mm] gemeint ? [mm] 14^{2005}?Wenn [/mm] ja wiso wird es in der Aufgabe [mm] 14^{2006}-1 [/mm] geschrieben?

Gruß Jumper

        
Bezug
Geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Sa 22.05.2010
Autor: SEcki


> Zeigen sie unter Verwenduntg der Geometrischen
> Summenformel

Hast du das gegooglet? Oder kensnt du sie?

>  Die Frage ist genau so geschrieben!

Kein Wunder.

>  Was ist hier mit [mm]14^{2006}-1[/mm] gemeint ?

Eine Zahl (14) hoch einer anderen (2006), das Ergebnis minus 1.

Kennst du dich mit grundsätzlicher Arithmetik und Schreibweise in der Mathematik aus? Man potenziert bevor man etwas abzieht wen das so geschrieben ist. Exponenzieren bindet stärker als -.


> [mm][mm] 14^{2005}? [/mm]

Nein, dass wäre sowieso nicht durch 13 teilbar.

SEcki

Bezug
                
Bezug
Geometrische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 22.05.2010
Autor: jumper

Ich kenne die Frage!

Ja eigentlich kenne ich mich schon einigermaßen mit Arithmetik aus.

Ich hab nur keine Ahnung wie ich die geometrische reihe aufstellen soll
[mm] 1+14+14^{2}+14^{3}.......14^{n-1}wenn [/mm] ich in dir formeö der Formelsammlung einsetze und a=1 und q= 14 nehme! Das hilft mir aber nur wenig!

Gruß Jumper


Bezug
                        
Bezug
Geometrische Reihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:01 Sa 22.05.2010
Autor: jumper

[mm] 1+14+14^{2}+14^{3}.......14^{n-1}=a*\bruch{q^{n}-1}{q-1} [/mm]

Ist mir gerade noch aufgefallen!

Bezug
                        
Bezug
Geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Sa 22.05.2010
Autor: Al-Chwarizmi


> Ich kenne die Frage!
>  
> Ja eigentlich kenne ich mich schon einigermaßen mit
> Arithmetik aus.
>  
> Ich hab nur keine Ahnung wie ich die geometrische reihe
> aufstellen soll
> [mm]1+14+14^{2}+14^{3}.......14^{n-1}wenn[/mm] ich in dir formel
> der Formelsammlung einsetze und a=1 und q= 14 nehme! Das
> hilft mir aber nur wenig!
>  
> Gruß Jumper


Hallo Jumper,

gib doch zuerst mal die komplette Formel (Gleichung !) an,
die du verwenden möchtest. Dann überlegst du dir, wie
man sie allenfalls im Einzelnen auf die vorliegende Aufgabe
anwenden könnte.


LG    Al-Chw.

Bezug
                                
Bezug
Geometrische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Sa 22.05.2010
Autor: jumper

[mm] 1+14+14^{2}+14^{3}.......14^{2005}=1\cdot{}\bruch{14^{2006}-1}{14-1} [/mm]
so?
und nun?

Bezug
                                        
Bezug
Geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 22.05.2010
Autor: steppenhahn

Hallo,

>
> [mm]1+14+14^{2}+14^{3}.......14^{2005}=\bruch{14^{2006}-1}{14-1}[/mm]
>  so?

Wunderbar.
Was ist denn jetzt noch das Problem? Multipliziere auf beiden Seiten mit (14-1) = 13 !

Grüße,
Stefan

Bezug
                                                
Bezug
Geometrische Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Sa 22.05.2010
Autor: jumper

[mm] (1+14+14^{2}+14^{3}.......14^{2005})*13=14^{2006}-1 [/mm]

Und somit ist gezeigt das es durch 13 teilbar ist, oder?

Bezug
                                                        
Bezug
Geometrische Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Sa 22.05.2010
Autor: steppenhahn

Hallo,

>  [mm](1+14+14^{2}+14^{3}.......14^{2005})*13=14^{2006}-1[/mm]
>  
> Und somit ist gezeigt das es durch 13 teilbar ist, oder?

genau!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de