www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Gerade/Ungerade Funktion
Gerade/Ungerade Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade/Ungerade Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 11.10.2005
Autor: thomas

Hallo!

Also, ich habe folgendes Problem:

Gegeben ist eine kausale e-Funktion [mm] x(t)=e^{- \alpha t} \sigma(t) [/mm] mit [mm] \alpha [/mm] = 1

d.h. links vom Ursprung ist die Funktion 0 und rechts davon eine e-Funktion, weil das Sigma ab 0 mit dem Wert 1 definiert ist.
Jetzt soll man den geraden und den ungeraden Anteil der Funktion angeben und grafisch angeben. Ich hab irgendwie keine Ahnung wie ich das machen soll...
Bei sinus oder kosinus wäre es ja einfacher^^
apropos... ich hab mir schon überlegt, ob ich das e in sinus und kosinus zerlegen muss, aber ich glaube das ist falsch...

ich habe gelernt, dass man alle Signale in gerade und ungerade Anteile zerlegen kann:

x(t)= [mm] \bruch{x(t)}{2}+ \bruch{x(t)}{2}+ \bruch{x(-t)}{2}- \bruch{x(-t)}{2} [/mm]

ich hab mal herumprobiert und das hier ausgerechnet:

x(t)= [mm] \bruch{e^{-t} \sigma(t)}{2}+\bruch{e^{-t} \sigma(t)}{2}+\bruch{e^{t} \sigma(-t)}{2}-\bruch{e^{t} \sigma(-t)}{2} [/mm]

[mm] xg(t)=\bruch{e^{-t} \sigma(t)}{2}+\bruch{e^{t} \sigma(-t)}{2} [/mm]

[mm] xu(t)=\bruch{e^{-t} \sigma(t)}{2}-\bruch{e^{t} \sigma(-t)}{2} [/mm]

Tja, jetzt hab ich keine Ahnung was ich damit anfangen soll, ob es überhaupt richtig ist oder wie es weiter geht...

Ich bin für Hilfe und Hinweise sehr dankbar!

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gerade/Ungerade Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Di 11.10.2005
Autor: Stefan

Hallo!

Das ist doch alles richtig so! [daumenhoch]

Zeichne jetzt den geraden Anteil so:

Rechts von der $y$-Achse die Funktion $t [mm] \mapsto \frac{e^{-t}}{2}$, [/mm] und diese dann an der $y$-Achse spiegeln.

Zeichne jdann den ungeraden Anteil so:

Rechts von der $y$-Achse die Funktion $t [mm] \mapsto \frac{e^{-t}}{2}$, [/mm] und diese dann am Ursprung (punkt-)spiegeln.

Liebe Grüße
Stefan

Bezug
                
Bezug
Gerade/Ungerade Funktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mi 12.10.2005
Autor: thomas

Vielen Dank für die Antwort!

Gut, dass ich nicht falsch gelegen bin^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de