www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gerade/Vektor
Gerade/Vektor < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade/Vektor: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:44 Fr 21.10.2005
Autor: Phoebe

Hi,also, ich habe hier eine alte Prüfungsfrage und ich habe ehrlich gesagt absolut keine Ahnung, wie das alles funktioniert...
Ich weiß, dass affine Unterräume der Dimension 1 (2) Geraden (Ebenen) im [mm] \IR^{n} [/mm] sind. Dann habe ich das versucht für H anzuwenden, bin aber irgendwie auf dim = 2 gekommen, was ja eine Ebene wäre, was es ja nicht ist... ?! Kann mir vielleicht jemand helfen?

(a) Gegeben sei die Gerade

G := [mm] \vektor{1\\2\\3} [/mm] + [mm] {t*\vektor{3\\2\\1} | t \varepsilon R} [/mm]

Weiterhin sei

H := { x = [mm] \vektor{x_{1} \\ x_{2} \\ x_{3}} \varepsilon [/mm] R³ | [mm] -x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = 2, [mm] -x_{1} [/mm] + [mm] 2x_{2} [/mm] - [mm] x_{3} [/mm] = -8}

Zeigen Sie H ist eine Grade in R³.
Berechnen Sie den affinen Verbindungsraum H(G,H).
Ist H(G,H) ein Punkt, eine Gerade, eine Ebene oder ganz R³?
Wie liegen G und H zueinander (disjunkt, gleich, parallel, windschief)?
Begründen Sie alle Aussagen.

(b) Seien nun allgemein G,H irgendwelche Geraden in R³.
Welche Werte kann dimH(G,H) annehmen?
Wann gilt dimH(G,H) = 2?
Begründen Sie alle Aussagen.

        
Bezug
Gerade/Vektor: nur ein paar Ansätze
Status: (Antwort) fertig Status 
Datum: 21:22 Fr 21.10.2005
Autor: Bastiane

Hallo!

> (a) Gegeben sei die Gerade
>  
> G := [mm]\vektor{1\\2\\3}[/mm] + [mm]{t*\vektor{3\\2\\1} | t \varepsilon R}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Weiterhin sei
>  
> H := { x = [mm]\vektor{x_{1} \\ x_{2} \\ x_{3}} \varepsilon[/mm] R³
> | [mm]-x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]x_{3}[/mm] = 2, [mm]-x_{1}[/mm] + [mm]2x_{2}[/mm] - [mm]x_{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=

> -8}
>  
> Zeigen Sie H ist eine Grade in R³.

Hier könntest du die beiden Gleichungen als Ebenengleichungen auffassen, sie in die Parameterform umformen und dann die Schnittgerade berechnen. Aber evtl. geht es auch viel einfacher - ich weiß nur gerade nicht wie.

>  Berechnen Sie den affinen Verbindungsraum H(G,H).
>  Ist H(G,H) ein Punkt, eine Gerade, eine Ebene oder ganz
> R³?
>  Wie liegen G und H zueinander (disjunkt, gleich, parallel,
> windschief)?

Dafür müsstest du G und H einfach gleichsetzen - wenn du genau eine Lösung erhältst, schneiden sie sich, wenn du unendlich viele Lösungen erhältst, sind sie gleich, wenn du keine Lösung erhältst sind sie entweder parallel oder windschief - das kommt dann auf die Richtungsvektoren an. Und was ist denn der Unterschied zwischen disjunkt und windschief?

>  Begründen Sie alle Aussagen.
>  
> (b) Seien nun allgemein G,H irgendwelche Geraden in R³.
>  Welche Werte kann dimH(G,H) annehmen?
>  Wann gilt dimH(G,H) = 2?
>  Begründen Sie alle Aussagen.

Dazu kann ich dir leider nichts sagen. :-/

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de