www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Gerade und Ebene in R3
Gerade und Ebene in R3 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Ebene in R3: Frage
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:00 Mo 15.11.2004
Autor: a.lexa

Hallo miteinander!
Ich würde gern wissen, ob ich in folgender Aufgabe auf der richtigen Spur bin:
Ich habe zwei Ebenen gegeben mit:
E1: x+y-3z=2     und    E2: 2x+y+z=0

Nun soll ich erst mal zeigen, dass der Punkt (-2, 4, 0) auf beiden Ebenen liegt. Das mach ich dann wohl am besten durch einsetzen von P in
E1: -2+4-0=2    und     E2: 2(-2)+4+0=0 ?! Klappt ja zumindest :-)

Als nächstes soll ich die Parameterdarstellung der Schnittgeraden von E1 und E2 berechen. (Als Hilfestellung soll ich mir einen Vektor suchen, der auf den Normalenvektoren der beiden Ebenen senkrecht steht. ZUsätzlich soll ich mein erstes Ergebnis verwenden.)
Über das Kreuzprodukt (Vektorprodukt) habe ich hier erst mal einen Richtungsvektor ermittelt: E1xE2 = (4, -7, 1) und dann über zwei Gleichungen einen Stützvektor (-2, 4, 0)
Alles in allem müßte meine Parameterdarstellung der Schnittgeraden hoffentlich folgendermaßen aussehen:
g: x= [mm] \vektor{-2 \\ 4\\ 0}+ \lambda \vektor{4 \\ -7\\ 1} [/mm]

Als Letztes sollte ich noch herausfinden, welche der beiden Ebenen den größeren Abstand zum Punkt (-4, 11, 1) aufweist. Hier bin ich mit folgender Formal herangegangen:
d=  [mm] \bruch{|ar1+br2+cr3-r|}{ \wurzel{a²+b²+c²}} [/mm]

Müßte also für die erste Ebene so aussehen:

d= [mm] \bruch{|1*(-4)+1*11-3*1-2|}{ \wurzel{1²+2²-3²}} [/mm]
d= [mm] \bruch{|2|}{ \wurzel{11}} [/mm]
d= 0,603

Für die Ebene 2 ergibt sich ein Abstand von [mm] d=\bruch{4}{ \wurzel{6}}=1,633 [/mm]
Meinen rechnerisch unterentwicktelten Fähigkeiten zufolge müßte also die Ebene 2 den größeren Abstand zum Punkt (-4, 11, 1) haben.

Wer kann mir sagen, ob das stimmen kann. Irgendwie hab ich das Gefühl, dass das "zuuuu" einfach war und ich mir nun erst mal einbilde, einen Fehler gemacht zu haben?!

Freue mich natürlich auch, wenn es stimmen sollte. Aber Ihr wißt das sicher besser als ich.

Besten Dank im Voraus, a.lexa

Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de