www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 29: Oberstufenmathematik" - Gerade und Strecke
Gerade und Strecke < VK 29: Oberstufe < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade und Strecke: anal. Geom. der Geraden
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:58 Di 30.12.2008
Autor: argl

Aufgabe

Prüfen Sie ob sich die Gerade g durch die Punkte A und B und die
Strecke CD schneiden !

a) $A [mm] \vektor{1 \\ 2 \\ 1} [/mm]  B [mm] \vektor{0 \\ 3 \\ 3} [/mm] C [mm] \vektor{2 \\ 5 \\ 3} [/mm] D [mm] \vektor{-4 \\ 5 \\ 9}$ [/mm]

b) $A [mm] \vektor{3 \\ 3 \\ 1} [/mm]  B [mm] \vektor{2 \\ 2 \\ 0} [/mm] C [mm] \vektor{6 \\ 5 \\ 3} [/mm] D [mm] \vektor{8 \\ 6 \\ 4}$ [/mm]



        
Bezug
Gerade und Strecke: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:00 So 26.04.2009
Autor: Schachschorsch56

a)A [mm] \vektor{1 \\ 2 \\ 1} [/mm] B [mm] \vektor{0 \\ 3 \\ 3} [/mm] C [mm] \vektor{2 \\ 5 \\ 3} [/mm] D [mm] \vektor{-4 \\ 5 \\ 9} [/mm]

Zuerst stelle ich die Geradengleichung g (mit den Punkten A und B), dann die Geradengleichung h (mit den Punkten C und D) auf. Dann setze ich die Geradengleichungen gleich, um einen Schnittpunkt S zu ermitteln. Wenn die Skalare [mm] \lambda [/mm] und [mm] \mu [/mm] je einen Wert ergeben, gibt es einen Schnittpunkt S. Wenn zusätzlich gilt: 0 [mm] \le \mu \le [/mm] 1, dann liegt S auf  [mm] \overline{CD} [/mm] !

[mm] g:\vec{x}=\vektor{1 \\ 2 \\ 1}+\lambda\vektor{-1 \\ 1 \\ 2} [/mm]

[mm] h:\vec{x}=\vektor{2 \\ 5 \\ 3}+\mu\vektor{-6 \\ 0 \\ 6} [/mm]

Schnittpunkt [mm] S(S_1|S_2|S_3)=\vec{S}=\vektor{S_1 \\ S_2 \\ S_3} [/mm] wird durch Gleichsetzen der Geradengleichungen ermittelt:

[mm] \vektor{S_1 \\ S_2 \\ S_3}=\vektor{1 \\ 2 \\ 1}+\lambda\vektor{-1 \\ 1 \\ 2}=\vektor{2 \\ 5 \\ 3}+\mu\vektor{-6 \\ 0 \\ 6} [/mm]

als LGS geschrieben:

I 1 - [mm] \lambda [/mm] = 2 - [mm] 6\mu [/mm]
II 2 + [mm] \lambda [/mm] = 5 + [mm] 0\mu \Rightarrow \lambda [/mm] = 3 eingesetzt in I und III
III 1 + [mm] 2\lambda [/mm] = 3 + [mm] 6\mu [/mm]

ergibt:
I 1 - 3 = 2 - [mm] 6\mu \Rightarrow \mu [/mm] = [mm] \bruch{2}{3} [/mm]
II 1 + 6 = 3 + [mm] 6\mu \Rightarrow \mu [/mm] = [mm] \bruch{2}{3} [/mm]


Damit gibt es einen Schnittpunkt S, der auf g und wegen 0 [mm] \le \mu \le [/mm] 1 auch auf [mm] \overline{CD} [/mm] liegt !

Den genauen Wert von S brauchte man laut Aufgabenstellung nicht ermitteln !

b)A [mm] \vektor{3 \\ 3 \\ 1} [/mm] B [mm] \vektor{2 \\ 2 \\ 0} [/mm] C [mm] \vektor{6 \\ 5 \\ 3} [/mm] D [mm] \vektor{8 \\ 6 \\ 4} [/mm]

Vorgehensweise wie bei Aufgabe a):

[mm] g:\vec{x}=\vektor{3 \\ 3 \\ 1}+\lambda\vektor{-1 \\ -1 \\ -1} [/mm]

[mm] h:\vec{x}=\vektor{6 \\ 5 \\ 3}+\mu\vektor{2 \\ 1 \\ 1} [/mm]

[mm] \vektor{S_1 \\ S_2 \\ S_3}=\vektor{3 \\ 3 \\ 1}+\lambda\vektor{-1 \\ -1 \\ -1}=\vektor{6 \\ 5 \\ 3}+\mu\vektor{2 \\ 1 \\ 1} [/mm]

als LGS geschrieben:

I 3 - [mm] \lambda [/mm] = 6 + [mm] 2\mu [/mm]
II 3 - [mm] \lambda [/mm] = 5 + [mm] \mu [/mm]
III 1 - [mm] \lambda [/mm] = 3 + [mm] \mu \Rightarrow \mu [/mm] = - 2 [mm] -\lambda [/mm] setze in I und II ein:

I 3 - [mm] \lambda [/mm] = 6 - 4 - [mm] 2\lamda \Rightarrow \lambda [/mm] = -1 [mm] \Rightarrow \mu [/mm] = -1

Damit gibt es zwar einen Schnittpunkt (von g und h) S. Dieser liegt aber wegen [mm] \mu [/mm] < 0 nicht auf [mm] \overline{AB} [/mm]

Schorsch

Bezug
                
Bezug
Gerade und Strecke: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 23:08 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


> Zuerst stelle ich die Geradengleichung g (mit den Punkten A
> und B), dann die Geradengleichung h (mit den Punkten C und
> D) auf. Dann setze ich die Geradengleichungen gleich, um
> einen Schnittpunkt S zu ermitteln. Wenn die Skalare [mm]\lambda[/mm]
> und [mm]\mu[/mm] je einen Wert ergeben, gibt es einen Schnittpunkt
> S. Wenn zusätzlich gilt: 0 [mm]\le \mu \le[/mm] 1, dann liegt S auf  
> [mm]\overline{CD}[/mm] !

[ok] korrekt!


> ergibt:
>  I 1 - 3 = 2 - [mm]6\mu \Rightarrow \mu[/mm] = [mm]\bruch{2}{3}[/mm]
>  II 1 + 6 = 3 + [mm]6\mu \Rightarrow \mu[/mm] = [mm]\bruch{2}{3}[/mm]

[ok]


> Damit gibt es einen Schnittpunkt S, der auf g und wegen 0
> [mm]\le \mu \le[/mm] 1 auch auf [mm]\overline{CD}[/mm] liegt !

[ok]

  

> Den genauen Wert von S brauchte man laut Aufgabenstellung
> nicht ermitteln !

[ok]


Gruß
Loddar


Bezug
                
Bezug
Gerade und Strecke: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 23:12 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


[ok] Korrekt gelöst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de