www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Geraden im Raum
Geraden im Raum < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 04.03.2008
Autor: miezi

Aufgabe
eine gerade durch den punkt A hat de Richtung des Vektors v, also die parameterdarstellung [mm] \overrightarrow{OX} [/mm] = [mm] \overrightarrow{OA} [/mm] + t * [mm] \vec{v} [/mm] .

A(2 / -1); [mm] \vec{v} [/mm] = [mm] \vektor{1 \\ 4} [/mm]

Huhu.... ich verstehe mal wieder was nicht :( Kann mir jemand helfen?
Ich habe versucht die aufgabe anzufangen, aber ich glaube es ist falsch.
Mein Versuch ist

[mm] \overrightarrow{OX} [/mm] = [mm] \vektor{2 \\ -1} [/mm]  + t * [mm] \vektor{1 \\ 4} [/mm]

Irgendwie weiß ich nicht woher ich t wissen soll :( Im unterricht war das immer angegeben, was man da einsetzen soll...und ich weiß auch nicht, ob ich überhaupt die richtigen sachen eingesetzt habe... außer vllt bei vektor v. und wie ich dann weiter machen soll weiß ich auch nicht, weil ich mir relativ sicher bin, dass ich mal wieder bis jetzt alles falsch habe .
Toll im unterricht konnte ich noch alles und zuhause mal wieder 0. *deprimiert*

        
Bezug
Geraden im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Di 04.03.2008
Autor: MathePower

Hallo Miezi,

> eine gerade durch den punkt A hat de Richtung des Vektors
> v, also die parameterdarstellung [mm]\overrightarrow{OX}[/mm] =
> [mm]\overrightarrow{OA}[/mm] + t * [mm]\vec{v}[/mm] .
>  
> A(2 / -1); [mm]\vec{v}[/mm] = [mm]\vektor{1 \\ 4}[/mm]
>  Huhu.... ich verstehe
> mal wieder was nicht :( Kann mir jemand helfen?
>  Ich habe versucht die aufgabe anzufangen, aber ich glaube
> es ist falsch.
>  Mein Versuch ist
>  
> [mm]\overrightarrow{OX}[/mm] = [mm]\vektor{2 \\ -1}[/mm]  + t * [mm]\vektor{1 \\ 4}[/mm]

Das ist vollkommen richtig. [ok]

>  
> Irgendwie weiß ich nicht woher ich t wissen soll :( Im
> unterricht war das immer angegeben, was man da einsetzen
> soll...und ich weiß auch nicht, ob ich überhaupt die
> richtigen sachen eingesetzt habe... außer vllt bei vektor
> v. und wie ich dann weiter machen soll weiß ich auch nicht,
> weil ich mir relativ sicher bin, dass ich mal wieder bis
> jetzt alles falsch habe .
>  Toll im unterricht konnte ich noch alles und zuhause mal
> wieder 0. *deprimiert*

[mm]t[/mm] ist der laufende Parameter der alle reellen Zahlen durchläuft, und demzufolge alle Punkte auf der obigen Geraden.

Für [mm]t=0[/mm] erhältst Du:

[mm]\overrightarrow{OX} = \vektor{2 \\ -1} + t * \vektor{1 \\ 4}=\vektor{2 \\ -1} + 0 * \vektor{1 \\ 4}=\vektor{2 \\ -1}[/mm]

Also den Punkt A.

Wenn das die ganze Aufgabe war, dann bist Du schon fertig.

Gruß
MathePower

Bezug
                
Bezug
Geraden im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Di 04.03.2008
Autor: miezi

naja unter der aufgabe steht noch, skizziere die gerade... aber dafür muss ich doch das auch ausrechnen oder nicht?
und noch eine andere frage :( Woher weiß ich denn was ich für t einsetzen muss... warum gerade 0? oder ist das, weil man da vielleicht sicher sien kann dass 0 auch auf der gerade liegt?

Bezug
                        
Bezug
Geraden im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 04.03.2008
Autor: miezi

die nächste aufgabe die im buch steht verstehe ich ebenfalls nicht. da ist ein lambda? oder so... und da steht gib die koordinaten der zu Lambda (ist irgend ein zeichen ich glaube es ist dieses) = 2 (-1;0) gehörenden punkte an
was mss ich denn da nun wieder machen? Bei der ersten aufgabe bin ich auch noch nicht weiter, außer dass ich die rechnung habe :'(

Bezug
                                
Bezug
Geraden im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Di 04.03.2008
Autor: MathePower

Hallo Miezi,

> die nächste aufgabe die im buch steht verstehe ich
> ebenfalls nicht. da ist ein lambda? oder so... und da steht
> gib die koordinaten der zu Lambda (ist irgend ein zeichen
> ich glaube es ist dieses) = 2 (-1;0) gehörenden punkte an
>   was mss ich denn da nun wieder machen? Bei der ersten
> aufgabe bin ich auch noch nicht weiter, außer dass ich die
> rechnung habe :'(

Ich denke mal, da sollen die Punkte für [mm]\lambda=2[/mm], [mm]\lambda=-1[/mm] und [mm]\lambda=0[/mm] angegeben werden.

Gruß
MathePower

Gruß
MathePower

Bezug
                        
Bezug
Geraden im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 04.03.2008
Autor: Zwerglein

Hi, miezi,

> naja unter der aufgabe steht noch, skizziere die gerade...
> aber dafür muss ich doch das auch ausrechnen oder nicht?

Da brauchst Du nichts auszurechnen.
Du zeichnest erst mal den Punkt A ins KoSy,
dann von diesem Punkt aus den Vektor [mm] \vec{v}. [/mm]
Die Gerade ist dann die "Verlängerung" des Vektors in beide Richtungen.

>  und noch eine andere frage :( Woher weiß ich denn was ich
> für t einsetzen muss... warum gerade 0? oder ist das, weil
> man da vielleicht sicher sien kann dass 0 auch auf der
> gerade liegt?

Dass MathePower für t=0 gesetzt hat, war nur EIN BEISPIEL!
t kann schlichtweg JEDE BELIEBIGE Zahl annehmen: Du erhältst immer Punkte, die auf der Geraden draufliegen!
Das ist ähnlich wie das x bei einer Funktion.
Z.B.: f(x) = [mm] x^{2}. [/mm]
Da darfst Du ja auch für x alles einsetzen, was Du willst!
z.B. erhältst Du für x=2:  f(2) = 4. Demnach liegt der Punkt P(2; 4) auf dem Graphen dieser Funktion (Parabel!).

mfG!
Zwerglein


Bezug
                                
Bezug
Geraden im Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 04.03.2008
Autor: miezi

ah okay. das versuche ich gleich mal. aber mir ist gerade aufgefallen, dass in den notizen, die ich mir im unterricht gemacht habe steht

setze t = -2 und darunter eine rechnung

[mm] \vec{x} [/mm] = [mm] \vektor{5 \\ 3 \\ 8 } [/mm] + (-2) [mm] \vektor{7 \\ 4 \\ 9 } [/mm]
= [mm] \vektor{5 \\ 3 \\ 8 } [/mm] - [mm] \vektor{-14 \\ -8 \\ -18 } [/mm]
= [mm] \vektor{-9 \\ -5 \\ -10 } [/mm]

Warum steht da in der 2ten zeile auf einmal ein minus vor dem vektor? Das minus aus dem (-2) ist doch schon in dem vektor [mm] \vektor{-14 \\ -8 \\ -18 } [/mm]  :( das verstehe ich auch nicht

Bezug
                                        
Bezug
Geraden im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 04.03.2008
Autor: MathePower

Hallo Miezi,

> ah okay. das versuche ich gleich mal. aber mir ist gerade
> aufgefallen, dass in den notizen, die ich mir im unterricht
> gemacht habe steht
>  
> setze t = -2 und darunter eine rechnung
>  
> [mm]\vec{x}[/mm] = [mm]\vektor{5 \\ 3 \\ 8 }[/mm] + (-2) [mm]\vektor{7 \\ 4 \\ 9 }[/mm]
>  
> = [mm]\vektor{5 \\ 3 \\ 8 }[/mm] - [mm]\vektor{-14 \\ -8 \\ -18 }[/mm]
>  =
> [mm]\vektor{-9 \\ -5 \\ -10 }[/mm]
>  
> Warum steht da in der 2ten zeile auf einmal ein minus vor
> dem vektor? Das minus aus dem (-2) ist doch schon in dem
> vektor [mm]\vektor{-14 \\ -8 \\ -18 }[/mm]  :( das verstehe ich auch
> nicht

Das ist ein Tipp-/Schreibfehler:

[mm]\vektor{5 \\ 3 \\ 8 } \red{+}\vektor{-14 \\ -8 \\ -18 }[/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de