Geraden schneiden sich < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:43 Mo 06.04.2009 | Autor: | Mandy_90 |
Aufgabe | Gegeben sind zwei sich schneidende Geraden [mm] g_{1}:\vec{x}=\vektor{1 \\ -10 \\ 1}+r*\vektor{2 \\ 5 \\ 1} [/mm] und [mm] g_{2}:\vec{x}=\vektor{6 \\ -3 \\ -5}+s*\vektor{-1 \\ 3 \\ 8}, [/mm] die daher beide in einer Ebene E liegen.Bestimmen Sie die Normalengleichung dieser Ebene E. |
Hallo zusammen^^
Ich hab mal eine Frage zu dieser Aufgabe.Die Aufgabenstellung hat mich schon ein wenig verwirrt.Da steht,dass die Geraden in einer Ebene liegen,da sie sich schneiden.Aber ist es immer so,dass zwei sich schneidende Geraden in einer Ebene liegen???
Die Normalengleichung bestimm ich ja einfach,indem ich den Schnittpunkt ausrechne und diesen als Stützpunkt Parametergleichung nehme.Dann kann ich noch die beiden Richtungsvektoren als Richtungsvektoren der Ebene nehmen und dann aus meiner Parametergleichung die Normalengleichung bestimmen.
Vielen Dank
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:48 Mo 06.04.2009 | Autor: | glie |
> Gegeben sind zwei sich schneidende Geraden
> [mm]g_{1}:\vec{x}=\vektor{1 \\ -10 \\ 1}+r*\vektor{2 \\ 5 \\ 1}[/mm]
> und [mm]g_{2}:\vec{x}=\vektor{6 \\ -3 \\ -5}+s*\vektor{-1 \\ 3 \\ 8},[/mm]
> die daher beide in einer Ebene E liegen.Bestimmen Sie die
> Normalengleichung dieser Ebene E.
> Hallo zusammen^^
Hallo Mandy
>
> Ich hab mal eine Frage zu dieser Aufgabe.Die
> Aufgabenstellung hat mich schon ein wenig verwirrt.Da
> steht,dass die Geraden in einer Ebene liegen,da sie sich
> schneiden.Aber ist es immer so,dass zwei sich schneidende
> Geraden in einer Ebene liegen???
JA, das ist bei sich schneidenden Geraden im Raum immer so!
>
> Die Normalengleichung bestimm ich ja einfach,indem ich den
> Schnittpunkt ausrechne und diesen als Stützpunkt
> Parametergleichung nehme.Dann kann ich noch die beiden
> Richtungsvektoren als Richtungsvektoren der Ebene nehmen
> und dann aus meiner Parametergleichung die
> Normalengleichung bestimmen.
Wenn du allerdings schon WEISST, dass die Geraden sich schneiden, dann musst du nicht unbedingt den Schnittpunkt berechnen, jeder beliebige Punkt einer der beiden Geraden kommt als Stützpunkt in Frage. Das spart hier doch ein bisschen Arbeit
Gruß Glie
>
> Vielen Dank
>
> lg
|
|
|
|