www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Geradengleichung
Geradengleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 04.12.2007
Autor: Zirbe

Aufgabe
Stellen Sie die Gleichung einer Geraden g auf, die folgende Eigenschaften hat:
Die Gerade g ist die Normale zur Geraden h: y=mx+1 und M (m/0) liegt auf g

Hallo!

Ich komme hier bei der Aufgabe leider nicht wirklich weiter, da ich ja von der Geraden h die Steigung m nicht angegeben hab und somit ja gar nicht weiß, wie die liegt. Wie soll ich denn dann wissen, wo die Gerade g liegt? Ich weiß ja nur, dass sie senkrecht auf h liegt.

Wäre toll, wenn mir jemand helfen könnte.

        
Bezug
Geradengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Di 04.12.2007
Autor: ONeill

Hallo!
> Stellen Sie die Gleichung einer Geraden g auf, die folgende
> Eigenschaften hat:
>  Die Gerade g ist die Normale zur Geraden h: y=mx+1 und M
> (m/0) liegt auf g
>  Hallo!
>  
> Ich komme hier bei der Aufgabe leider nicht wirklich
> weiter, da ich ja von der Geraden h die Steigung m nicht
> angegeben hab

Doch auf die Steigung kannst du kommen, das hast du sogar unten selbst geschrieben.
und somit ja gar nicht weiß, wie die liegt.

> Wie soll ich denn dann wissen, wo die Gerade g liegt? Ich
> weiß ja nur, dass sie senkrecht auf h liegt.

Das ist richtig. Wenn h senkrecht auf g liegt, schneiden sich die beiden Geraen in einem 90° Winkel. Die Steigung von h ist 1, damit ist die Steigung von g gleich -1.
Um dir das zu veranschaulichen, mal einfach mal eine beliebige Gerade mit der Steigung 1 auf, dann eine, die senkrecht dazu steht und guck welche Steigung diese Gerade hat.
Gruß ONeill

Bezug
                
Bezug
Geradengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 04.12.2007
Autor: Zirbe

Vielen Dank für deine Antwort.

Wie komme ich denn darauf, das h die Steigung von 1 hat?

Ich kenne nur die Formel: m= [mm] \bruch{y2-y1}{x2-x1} [/mm]
Und ich hab für h ja gar keine Koordinaten angegeben?!

Bezug
                        
Bezug
Geradengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 04.12.2007
Autor: Blech


> Vielen Dank für deine Antwort.
>  
> Wie komme ich denn darauf, das h die Steigung von 1 hat?

Überhaupt nicht, weil sie nicht 1 haben muß =)

> Ich kenne nur die Formel: m= [mm]\bruch{y2-y1}{x2-x1}[/mm]
>  Und ich hab für h ja gar keine Koordinaten angegeben?!

Wenn h die Steigung m hat, dann hat eine senkrechte Gerade die Steigung [mm] $-\frac{1}{m}$. [/mm] (sofern [mm] $m\neq [/mm] 0$ natürlich).

Wenn Du Dir das Steigungsdreieck zu h vorstellst, dann besteht das aus den Punkten (x1,y1), (x2,y1), (x2,y2). (im Bild die Punkte (2,1), (7,1) und (7,3)).
Um jetzt eine Gerade zu erhalten, die senkrecht zu h steht, drehen wir das Steigungsdreieck um 90°, weil dann sämtliche Seiten vom gedrehten Dreieck senkrecht zu den entsprechenden des urspr. Dreiecks stehen.
Im Bild können wir das Dreieck um (2,1) einfach 90° nach unten drehen. Dann haben wir (2,1), (2,-4), (4,-4). Wir können's auch um einen anderen Punkt und 90° nach oben drehen, spielt keine Rolle.
Das Ergebnis ist, daß die Seite, die vorher parallel zur x-Achse verlief nun parallel zur y-Achse steht und umgekehrt. Damit sind im Bruch oben einfach Zähler und Nenner vertauscht, und weil wir drehen, ist eine der Differenzen jetzt negativ.
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de