www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Geradenschnittpunkt
Geradenschnittpunkt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradenschnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mi 17.10.2007
Autor: Loon

Aufgabe
Gegeben ist die Gerade g durch ihre Parameterdarstellung: [mm] \vec{x} [/mm] = [mm] \vektor{ 1 \\ 0 \\ -2} [/mm] + [mm] \mu \vektor{ 1 \\ -2 \\ 3} [/mm]
a) Bestimmen Sie in der folgenden Parameterdarstellung der Geraden hp die Zahl p so, dass sich die Geraden g und hp schneiden.
hp : [mm] \vec{x} [/mm] = [mm] \vektor{ 3 \\ -1 \\ 1} [/mm] + [mm] \lambda [/mm] { -1 [mm] \\ [/mm] 1 [mm] \\ [/mm] p}

Hallo,

also, ich habe zunächste die beiden Geraden glecihgesetzt und anschließend so umgeformt, dass die Unbekannten auf einer Seite sind:
[mm] \mu [/mm] + [mm] \lambda [/mm] = 2
[mm] -2\mu [/mm] - [mm] \lambda [/mm]
[mm] 3\mu [/mm] - [mm] p\lambda [/mm] = 3

Anschließend habe ich die Zahlen in eine Matrix eingesetzt (für p habe ich dabei x eingesetzt) und diese gelöst, dabei kam diese Diagonalmatrix (heißt die so? Hab den Namen vergessen...sorry) raus.
Was sagt mir das nun? Ist p dann 0?

Danke,
Loon

        
Bezug
Geradenschnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 17.10.2007
Autor: Zwerglein

Hi, Loon,

> Gegeben ist die Gerade g durch ihre Parameterdarstellung:
> [mm]\vec{x}[/mm] = [mm]\vektor{ 1 \\ 0 \\ -2}[/mm] + [mm]\mu \vektor{ 1 \\ -2 \\ 3}[/mm]
>  
> a) Bestimmen Sie in der folgenden Parameterdarstellung der
> Geraden hp die Zahl p so, dass sich die Geraden g und hp
> schneiden.
> hp : [mm]\vec{x}[/mm] = [mm]\vektor{ 3 \\ -1 \\ 1}[/mm] + [mm]\lambda[/mm] [mm] \vektor{-1 \\ 1 \\ p} [/mm]


> also, ich habe zunächste die beiden Geraden glecihgesetzt
> und anschließend so umgeformt, dass die Unbekannten auf
> einer Seite sind:

Bemerkung: So geht's natürlich, aber ich selbst würd's über die Determinante machen!
Schauen wir uns Deine Lösung an:

> [mm]\mu[/mm] + [mm]\lambda[/mm] = 2
>  [mm]-2\mu[/mm] - [mm]\lambda[/mm]

Hier fehlt dann die rechte Seite: "= -1"

>  [mm]3\mu[/mm] - [mm]p\lambda[/mm] = 3

  

> Anschließend habe ich die Zahlen in eine Matrix eingesetzt
> (für p habe ich dabei x eingesetzt) und diese gelöst, dabei
> kam diese Diagonalmatrix (heißt die so? Hab den Namen
> vergessen...sorry) raus.
> Was sagt mir das nun? Ist p dann 0?

Also grundsätzlich:
Du hast ein LGS mit 2 (ZWEI !) Unbekannten [mm] \lambda [/mm] und [mm] \mu [/mm]
und EINEM Parameter, nämlich p.

Daher musst Du die Unbekannten aus den beiden ersten Gleichungen bestimmen und anschließend aus der 3. Gleichung das p so ermitteln, dass eine WAHRE AUSSAGE rauskommt.

Zur Kontrolle:
[mm] \lambda [/mm] = 3;  [mm] \mu [/mm] = -1.
Daraus: p = -2.

All clear now?

mfG!
Zwerglein



Bezug
                
Bezug
Geradenschnittpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mi 17.10.2007
Autor: Loon

Japp, alles klar, vielen Dank! :-))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de