www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Gerschgorin
Gerschgorin < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerschgorin: lage der Eigenwerte
Status: (Frage) überfällig Status 
Datum: 14:52 Di 29.01.2013
Autor: professor_hastig

Aufgabe
Sei A [mm] \in \IC^{nxn} [/mm]
Zeignen sie, dass in der vereingung [mm] M_{1}:=\bigcup_{i=1}^{k}G_{i} [/mm] genau k und in der Vereinigung [mm] M_{2} [/mm] genau n-k Eigenwerte liegen.



Hallo Leute,

Wollte mal kurz fragen  ob jemand eine Idee hatt wie man das zeigen kann?

habe versucht die Matrix A in eine Summe aus D+B zu zerlegen dabei ist D die Diagonale von A.
Wenn B =0 ist, so ist die Aussage offenbar korrekt, aber wie macht man nun weiter?

Gruß an alle

        
Bezug
Gerschgorin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Di 29.01.2013
Autor: schachuzipus

Hallo,


> Sei A [mm]\in \IC^{nxn}[/mm]
>  Zeignen sie, dass in der vereingung
> [mm]M_{1}:=\bigcup_{i=1}^{k}G_{i}[/mm] genau k und in der
> Vereinigung [mm]M_{2}[/mm] genau n-k Eigenwerte liegen.


Aha, damit kann man viel anfangen.

Was sollen die [mm]G_i[/mm] sein?

[mm]M_2[/mm] ist Vereinigung wovon?


Wieso bist du so sparsam mit den Infos? Ist das geheim? ;-)

>
> Hallo Leute,
>  
> Wollte mal kurz fragen  ob jemand eine Idee hatt wie man
> das zeigen kann?
>  
> habe versucht die Matrix A in eine Summe aus D+B zu
> zerlegen dabei ist D die Diagonale von A.
> Wenn B =0 ist, so ist die Aussage offenbar korrekt, aber
> wie macht man nun weiter?
>  
> Gruß an alle

Zurück!

schachuzipus


Bezug
        
Bezug
Gerschgorin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Di 29.01.2013
Autor: fred97


> Sei A [mm]\in \IC^{nxn}[/mm]
>  Zeignen sie, dass in der vereingung
> [mm]M_{1}:=\bigcup_{i=1}^{k}G_{i}[/mm] genau k und in der
> Vereinigung [mm]M_{2}[/mm] genau n-k Eigenwerte liegen.
>  
>
> Hallo Leute,
>  
> Wollte mal kurz fragen  ob jemand eine Idee hatt wie man
> das zeigen kann?
>  
> habe versucht die Matrix A in eine Summe aus D+B zu
> zerlegen dabei ist D die Diagonale von A.
> Wenn B =0 ist, so ist die Aussage offenbar korrekt, aber
> wie macht man nun weiter?
>  
> Gruß an alle


Ich kann mich meinem Vorredner nur anschließen.

Da es um Gershgorin geht, nehme ich an, dass [mm] G_i [/mm] der i-te Gershgorinkreis ist. Nicht für mich, aber für andere solltest Du hinschreiben wie [mm] G_i [/mm] definiert ist.

Weiter wird wohl sein
  

     $ [mm] M_{2}:=\bigcup_{i=k+1}^{n}G_{i} [/mm] $.

Also: nicht so hastig Herr Professor Hastig.

FRED


P:S.:

Ich hab vor mir liegen das wunderbare Büchlein " Gersgorin and his circles" von R:S: Varga.





Bezug
                
Bezug
Gerschgorin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Di 29.01.2013
Autor: professor_hastig

Sorry :)

Ok nochmal ganz von vorne bei [mm] G_{i} [/mm] handelt es sich um den i-ten Gerschgorinkreis  zur  i-ten Zeile  der Matrix A [mm] \in \IC^{nxn}, [/mm] also

[mm] G_{i}:= \{z \in \IC || z-a_{ii}|\le \summe_{j=1 j \not=i}^{n}=: r_{i}\} [/mm]
laut dem Satz von Gerschgorin befinden sich alle Eigenwerte der Matrix A in der Vereinigungsmenge der Gerschgorinkreise M:= [mm] \bigcup_{i=1}^{n}G_{i} [/mm] , wenn aber einzelne Untermengen der Menge M alerdings disjunkt sind(in meinem Fall also die Mengen M1:= [mm] \bigcup_{i=1}^{k}G_{i} [/mm]  und [mm] M2:=\bigcup_{i=k+1}^{n}G_{i}) [/mm] so befinden sich genau k Eigenwerte in M1 und n-k in M2.
Nun weis ich alerdings nicht wie ich das genau zeigen soll.
Gruß professor-hastig

Bezug
        
Bezug
Gerschgorin: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 31.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de