www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Gesamtschrittverfahren
Gesamtschrittverfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesamtschrittverfahren: Konvergenz
Status: (Frage) beantwortet Status 
Datum: 11:32 Mo 07.03.2011
Autor: aly19

Aufgabe
Zeigen sie, dass das GSV für folgende Matrix [mm] A\in \IR^{n\times n} [/mm] konvergent ist.
1<=i,j<=n:
[mm] a_{i,j}=\begin{cases} 2^{-i}, & \mbox {fuer} i>j \\ 2^{i-1}, & \mbox{fuer } i<=j \end{cases} [/mm]

Hey, ich komm bei der Aufgabe nicht weiter. Hat da jemand einen Trick für mich, das strikte Zeilensummenkriterium passt ja schonmal nicht. Kann man das auch für die Spalten machen? Dann müsste es doch eigentlich stimmen oder? Oder gibt es noch einen anderen Satz den man anwenden kann?
Danke schonmal für eure hilfe.

        
Bezug
Gesamtschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Fr 11.03.2011
Autor: max3000

Hast du mal geprüft, ob die Matrix diagonaldominant ist?
Einfach mal in einer Zeile alles außer die Diagonale zusammenrechnen.
Gilt dann

[mm] $\summe_{j=0,j\ne i}^m [/mm] a_ij < [mm] a_{ii}$? [/mm]

Wenn das nicht geht musst du etwas tiefer reingehen.
Die Konvergenzbeweise von allen Splitting-Verfahren verwenden den Banachschen Fixpunktsatz.

Dazu betrachtest du die Fixpunktgleichung

[mm] \hat{x}=D^{-1}(D-A)x [/mm]

und schaust nach, ob der Operator [mm] T:=D^{-1}(D-A) [/mm] bezüglich der Spektralnorm kontrahierend ist. Dann bist du fertig.

Versuch das ganze erstmal selber und gib uns bescheid ob einer dieser Ansätze erfolgreich war.


Jetzt wollt ich grad posten, aber ich sehe grad, dass [mm] D^{-1}(A-D)<1 [/mm] genau das selbe ist wie die Diagonaldominanz.
Also vergiss das mit dem Banach.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de