www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Geschwindigkeiten, PPL
Geschwindigkeiten, PPL < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeiten, PPL: Hilfestellung, Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 21.07.2011
Autor: Marcel08

Geschwindigkeiten auf einer Parallelplattenleitung


Um den Unterschied zwischen den verschiedenen Geschwindigkeitsdefinitionen zu verdeutlichen, betrachtet man zum Beispiel die Wellenausbreitung in einer Bandleitung (Plattenbreite a, Plattenabstand b [mm] \to k_{y}=\bruch{n\pi}{b}). [/mm]


Aus der Dispersionsbeziehung

(1) [mm] \beta:=k_{x}=\wurzel{\bruch{\omega^{2}}{c^{2}_{1}}-\vektor{\bruch{n\pi}{b}}^{2}} [/mm]


erhält man die Phasengeschwindigkeit

(2) [mm] v_{p}=\bruch{\omega}{\beta}=c_{1}\bruch{1}{\wurzel{1-\vektor{\bruch{n\pi{c_{1}}}{b\omega}}^{2}}}>c_{1} [/mm]


Dahingegen ist die Gruppengeschwindigkeit

(3) [mm] v_{g}=\bruch{d\omega}{d\beta}=\bruch{1}{\bruch{d\omega}{d\beta}}=\bruch{\wurzel{\bruch{\omega^{2}}{c_{1}^{2}}-\vektor{\bruch{n\pi}{b}}}}{\bruch{1}{2}*\bruch{2\omega}{c_{1}^{2}}}=c_{1}\wurzel{1-\vektor{\bruch{n\pi{c_{1}}}{b\omega}}^{2}}


Meine Frage:

Die Phasengeschwindigkeit [mm] v_{p} [/mm] erhalte ich durch Umstellen der Gleichung (1). Ich kann auch hier wieder nicht nachvollziehen, wie ich mit Gleichung (2) auf Gleichung (3) gelange. Um die entsprechende Ableitung bilden zu können, brauche ich doch explizit eine Funktion [mm] \omega(\beta). [/mm] Gibt es da vielleicht einen Trick, um eine solche Gleichung zu erhalten, die man dann wie gewohnt ableiten kann? Über einen hilfreichen Tipp würde ich mich freuen; vielen Dank!



Viele Grüße, Marcel

        
Bezug
Geschwindigkeiten, PPL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Do 21.07.2011
Autor: qsxqsx

Hallo Marcel,

Bin vor kurzer Zeit am Gleichen gestolpert! Deine Frage ist doch konkret gesagt, "wie kommt man auf (3)"? Genau, du brauchst [mm] w(\beta) [/mm] !

Erstmal erläuterungen:
Man nehme an es gäbe [mm] f_{A} [/mm] -> die Trägerfrequenz und [mm] f_{B} [/mm] -> Informationsfrequenz. Es ist [mm] f_{A} [/mm] >> [mm] f_{B}. [/mm] Es entstehen Signale der 3 Frequenzen [mm] f_{A} [/mm] - [mm] f_{B}, f_{A}, f_{A} [/mm] + [mm] f_{B}. [/mm] Die Information ist mit den 3 Frequenzen redundant, es genügen also 2 wie z.B. [mm] f_{A} [/mm] und [mm] f_{A} [/mm] + [mm] f_{B}. [/mm]
Nennen wir nun [mm] f_{1} [/mm] := [mm] f_{A} [/mm]  und [mm] f_{2} [/mm] := [mm] f_{A} [/mm] + [mm] f_{B}. [/mm] Zu [mm] f_{1} [/mm] gehört ein [mm] \beta_{1} [/mm] und zu [mm] f_{2} [/mm] ein [mm] \beta_{2}. [/mm] Also folgt:
E(x,t) = [mm] E_{0}(cos(w_{1}*t [/mm] - [mm] \beta_{1}*z) [/mm] + [mm] cos(w_{2}*t [/mm] - [mm] \beta_{2}*z)) [/mm] =  [mm] 2E_{0}*cos(\bruch{w_{1} + w_{2}}{2}*t [/mm] -  [mm] \bruch{\beta_{1} + \beta_{2}}{2}*z)*cos(\bruch{w_{1} - w_{2}}{2}*t [/mm] -  [mm] \bruch{\beta_{1} - \beta_{2}}{2}*z) [/mm]  (Mit Hilfe von Trigonometrischen Formeln).

PHASENGESCHWINDIGKEIT:
Weil nun [mm] w_{1} \approx w_{2} [/mm] und [mm] \beta_{1} \approx \beta_{2} [/mm] ist nur der erste cos-Term für die Phase relevant und es ist
[mm] v_{p} [/mm] = [mm] \bruch{w_{1} + w_{2}}{\beta_{1} + \beta_{2}} \approx \bruch{w}{\beta} [/mm]

GRUPPENGESCHWINDIGKEIT (So wird Infomation Transportiert!):
[mm] \bruch{w_{1} - w_{2}}{2}*t [/mm] - [mm] \bruch{\beta_{1} - \beta_{2}}{2}*z [/mm] = const.
Also [mm] v_{g} [/mm] = [mm] \bruch{w_{1} - w_{2}}{\beta_{1} - \beta_{2}} \approx \bruch{\partial w}{\partial \beta} [/mm]

Hier die Antwort:
[mm] v_{g} [/mm] = [mm] \bruch{dw}{d\beta} [/mm] =  [mm] \bruch{dw(\beta)}{d\beta} [/mm] = [mm] \bruch{d\wurzel{\bruch{\beta^{2} + \bruch{n*\pi}{b}^{2}}{\mu*\varepsilon}}}{d\beta} [/mm] = ...
wobei ich c = [mm] \bruch{1}{\wurzel{\mu*\varepsilon}} [/mm] benutzt hab.

Du bekommst nach dem Ableiten einen Audruck in Abhängigkeit von [mm] \beta. [/mm] Setze dann einfach für [mm] \beta [/mm] wieder [mm] \beta [/mm] = [mm] \wurzel{w^{2}*\mu*\varepsilon - (\bruch{n*\pi}{b})^{2}} [/mm] ein.

Gruss

(Achtung du hast bei (3) einen Fehler, es ist [mm] (\bruch{n*\pi}{b})^{2} [/mm] unter der Wurzel und nicht [mm] \bruch{n*\pi}{b}.) [/mm]

Bezug
                
Bezug
Geschwindigkeiten, PPL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Fr 22.07.2011
Autor: Marcel08

Hallo!

Ja vielen Dank, das passt in der Tat.


Viele Grüße, Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de