www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Geschwindigkeitsverlauf
Geschwindigkeitsverlauf < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeitsverlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 04.07.2011
Autor: sashdan

Hallo,
ich möchte die Geschwindigkeit v eines Fahrzeugs über die Zeit t von 0 auf 100 km/h darstellen. Die Beschleunigung soll dabei nicht konstant sein [mm]a \ne const.[/mm], d.h am Anfang soll die Beschleunigung ihren größten Wert haben [mm] a_0 = a_m_a_x[/mm] und bei 100 km/h einen geringeren Wert haben.

Bekannte Größen sind:
- Dauer in der 100 km/h erreicht werden sollen [mm]t_1_0_0 = 12.7s[/mm]
- Anfangsbeschleunigung [mm]a_0 = 2.68 m/s[/mm]

Wie groß muss die (linear fallende) Beschleunigung a(t) bei [mm]t_1_0_0[/mm] noch sein, damit die 100 km/h in 12.7s erreicht werden?
Wie komme ich jetzt auf den Funktionsverlauf v(t)?

Mein Ansatz war:
[mm]a(t) = a_0 + \bruch {a_1_0_0 - a_0}{t_1_0_0-t_0}*t[/mm]
mit [mm] t_0 = 0[/mm]
Einsetzen in v = a(t)*t liefert:
[mm] v(t) = (a_0 + \bruch{a_1_0_0 - a_0}{t_1_0_0}*t)*t[/mm]

wenn ich jetzt v(t) = 100 km/h = 27.78 m/s setze und t_100 = 12.7s sollte ich doch eigentlich a_100 bestimmen können. Die Werte sind aber immer viel zu groß!

Wer kann mir mit meinen Fragen helfen?

        
Bezug
Geschwindigkeitsverlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 04.07.2011
Autor: leduart

Hallo
v=a*t gilt nur bei konstanter Beschleunigung, genau wie s=v*t nur bei konstanter Geschwindigkeit gilt. richtig ist
[mm]v=\integral_{0}^{t_e}{a(t)dt}[/mm]
Gruss leduart


Bezug
                
Bezug
Geschwindigkeitsverlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Mo 04.07.2011
Autor: sashdan

Hallo leduart,

ich habe in das Integral meine Funktion a(t) (stimmt die?) eingesetzt, integriert, nach a_100 umgestellt.
Dann habe ich a_100 in a(t) und a(t) in v(t) eingesetzt und das Integral allgemein gelöst. Ergebnis: [mm]v(t)=a_0*t+0.5*bruch{a_1_0_0-a_0}{t_1_0_0}*t^2, v_0[/mm] fällt ja weg da [mm]v_0=0[/mm]. Untere Grenze des Integrals ist eh Null, also bleibt oben stehende Formel.
Wenn ich jetzt aber t = [1,2,...,20] einsetze erreicht meine Kurve in keinem Punkt die 100 km/h.

Der Einfachheit halber hier mein MATLAB-Code:
t_100 = 12.7;
%Durchschnittliche Beschleunigung um 20% erhöht = initiale Beschleunigung
[mm] a_0 [/mm] = 100/3.6/12.7*1.2
%v=$a(t)dt mit a(t) = [mm] a_0+(a_100-a_0)/t_100*t; [/mm] integrieren und nach a_100
%umstellen liefert
a_100 = (2*27.78)/t_100 - [mm] a_0 [/mm]

t(1,1) = 0;
a(1,1) = [mm] a_0; [/mm]
v(1,1) = 0;

t(2,1) = 1;
a(2,1) = [mm] a_0 [/mm] +(a_100 - [mm] a_0)/t_100*t(2,1); [/mm]
v(2,1) = a(2,1)*t(2,1)*3.6;

for k = 3:25
    t(k,1) = k-1;
    a(k,1) = [mm] a_0 [/mm] + [mm] (a_100-a_0)/t_100*t(k,1); [/mm]
    v(k,1) = a(k,1)*t(k,1)*3.6;
end

plot(t,v, 'r')
hold on;
grid on;
plot(t,a)
hold on;


Bezug
                        
Bezug
Geschwindigkeitsverlauf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:17 Di 05.07.2011
Autor: reverend

Hallo sahsdan,

Matlab kann ich nicht lesen, das habe ich nie gelernt.

Kannst Du das mal mathematisch schreiben, dann kann ich Dein Integral bestimmt kontrollieren. Anderen wird das wohl auch so gehen. Ohne weitere Erklärung kannst Du sonst nur Hilfe von Matlab-Kundigen bekommen...

Grüße
reverend


Bezug
                                
Bezug
Geschwindigkeitsverlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:06 Di 05.07.2011
Autor: sashdan

Hi reverend,

hier das ganze mathematisch:
linerarer Beschleunigungsverlauf a(t)
[mm] a_0:[/mm] Beschleunigung im Zeitpunkt [mm] t = 0[/mm]
[mm]a_1_0_0[/mm] = beschleunigung Zeitpunkt [mm]t_1_0_0[/mm]
[mm]t_1_0_0[/mm] = Zeit bis [mm]100 km/h = 27.78 m/s[/mm] erreicht sind

[mm]a(t) = a_0 \bruch{a_1_0_0-a_0}{t_1_0_0}*t[/mm]

[mm]v(t) = \integral_{0}^{t}{a(t) dt} = [a_0*t+1/2*\bruch{a_1_0_0-a_0}{t_1_0_0}*t^2 + v_0]_0^t[/mm]

mit [mm]v_0 = 0[/mm] ergibt sich dann durch Umstellen nach [mm]a_1_0_0[/mm]:
[mm]a_1_0_0 = \bruch{2*27.78}{t_1_0_0}-a_0[/mm]

Einsetzen von [mm]a_1_0_0[/mm] in [mm]v(t)[/mm] liefert dann die Gleichung zur Berechnung von [mm]v(t)[/mm]:
[mm]v(t) = a_0*t+1/2*\bruch{\bruch{2*27.78}{t_1_0_0}-2*a_0}{t_1_0_0}*t^2[/mm]
setzt man [mm]t = [mm] t_1_0_0 [/mm] = 12.7s[mm] ein erhält man aber nicht [mm]v(t_1_0_0) = 27.78 m/s[/mm].

Bsp.: [mm]t_1_0_0 = 12.7, a_0 = 2.6 m/s[/mm] liefert [mm]a_100 = 1.775 m/s[/mm], daraus folgt:
[mm] v(t) = 2.6*12.7 + 0.5*\bruch{1.775-2.6}{12.7} = 32,99 m/s oder 118 km/h [/mm]

Warum komme ich nicht auf 100 km/h??


Bezug
                                        
Bezug
Geschwindigkeitsverlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Di 05.07.2011
Autor: leduart

Hallo

> Hi reverend,
>  
> hier das ganze mathematisch:
>  linerarer Beschleunigungsverlauf a(t)
>  [mm]a_0:[/mm] Beschleunigung im Zeitpunkt [mm]t = 0[/mm]
>  [mm]a_1_0_0[/mm] =
> beschleunigung Zeitpunkt [mm]t_1_0_0[/mm]
>  [mm]t_1_0_0[/mm] = Zeit bis [mm]100 km/h = 27.78 m/s[/mm] erreicht sind
>  
> [mm]a(t) = a_0 \bruch{a_1_0_0-a_0}{t_1_0_0}*t[/mm]
>  
> [mm]v(t) = \integral_{0}^{t}{a(t) dt} = [a_0*t+1/2*\bruch{a_1_0_0-a_0}{t_1_0_0}*t^2 + v_0]_0^t[/mm]
>  
> mit [mm]v_0 = 0[/mm] ergibt sich dann durch Umstellen nach [mm]a_1_0_0[/mm]:
>  [mm]a_1_0_0 = \bruch{2*27.78}{t_1_0_0}-a_0[/mm]
>  
> Einsetzen von [mm]a_1_0_0[/mm] in [mm]v(t)[/mm] liefert dann die Gleichung
> zur Berechnung von [mm]v(t)[/mm]:
>  [mm]v(t) = a_0*t+1/2*\bruch{\bruch{2*27.78}{t_1_0_0}-2*a_0}{t_1_0_0}*t^2[/mm]
>  
> setzt man [mm]t = t_1_0_0[/mm] = 12.7s[mm] ein erhält man aber nicht v(t_1_0_0) = 27.78 m/s[/mm].[/mm][/mm]
> [mm] [/mm][/mm]
> [mm]Bsp.: t_1_0_0 = 12.7, a_0 = 2.6 m/s[/mm] liefert [mm]a_100 = 1.775 m/s[/mm], daraus folgt:[/mm][/mm]
> [mm] v(t) = 2.6*12.7 + 0.5*\bruch{1.775-2.6}{12.7} = 32,99 m/s oder 118 km/h[/mm][/mm][/mm]
> [mm] [/mm][/mm]
> [mm]Warum komme ich nicht auf 100 km/h??[/mm][/mm]

weil du nicht richtig eingesetzt hast!
v(t) = 2.6*12.7 + [mm] 0.5*\bruch{1.775-2.6}{12.7}*12.7^2 [/mm] !!
gruss leduart



Bezug
                        
Bezug
Geschwindigkeitsverlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 01:11 Di 05.07.2011
Autor: leduart

Hallo
ich versteh nicht ganz was dein matlabptogramm soll?
du hast doch die einfache Gleichung um die Endbeschl. auszurechnen.
[mm]\bruch{100}{3.6}\bruch{m}{s}=2,68\bruch{m}{s^2}*12.7s-\bruch{2.68-x}{2}*\bruch{m}{s^2}*12.7s[/mm]
dabei ist x die gesuchte Endbeschleunigung, bei die [mm] a_{100} [/mm]
ich komm dabei auf [mm] x=1.69m/s^2 [/mm] gerundet. ich sehe gtade das hast du auch.
und natürlich dann auch nach 12.7s   100km/h
warum du die "durchschnittliche" Beschleunigung um irgendwie erhöhst versteh ich auch nicht. Ich dachte die Anfangsbeschl ist fest gegeben, wenn sie dann abnehmen soll kannst du sie doch nicht erhöhen?
zu deinem Programm:
die Zeile v(k,1) = a(k,1)*t(k,1)*3.6;
ist sicher sinnlos, du rechnes v ja wieder so aus, als ob von anfang an die Beschl a(k,1) herrschte.
Wenn du unbedingt die integration, die du ja oben richtig gemacht hast nochmal numerisch mit den großen Schritten 1 machen willst, dann sollte da stehen v(k,1) = v(k-1,1)+a(k,1)*1*3.6;
aber warum nicht einfach dein Ergebnis plotten, nachdem du in die richtige formel von oben [mm] a_{100} [/mm] eingesetzt hast?
(Nebenfrage, warum haben alle deine Variablen 2 Indices?)
Gruss leduart


Bezug
                                
Bezug
Geschwindigkeitsverlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:45 Di 05.07.2011
Autor: sashdan

Super so klappt es schon mal! Danke für die Lösung!!!

Die Beschleunigung erhöht sich doch gar nicht über

a(k) = [mm] a_0 [/mm] + [mm] (a_100-a_0)/t_100*t(k) [/mm]

Mit den zwei Indices war wirklich Blödsinn. Bin noch MATLAB-Newbie. ;-)

Wie müssten a(t) und v(t) aussehen, wenn ich die Gleichung numerisch feiner unterteilen will? Sagen wir 0.1 Schritte.

a(t) = [mm] a_0 [/mm] + [mm] (a_100-a_0)/t_100*t [/mm]
v(t) = v(t-1)+a(t)*t*3.6

müsste ich es dann fürt = 0.4
a(t=0.4) = [mm] a_0 [/mm] + [mm] (a_100-a_0)/t_100*0.4 [/mm] und
v(t=0.4) = v(0.3)+a(t=0.4)*0.1*3.6
lauten?



Bezug
                                        
Bezug
Geschwindigkeitsverlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Di 05.07.2011
Autor: leduart

Hallo

> Super so klappt es schon mal! Danke für die Lösung!!!
>
> Die Beschleunigung erhöht sich doch gar nicht über
>  
> a(k) = [mm]a_0[/mm] + [mm](a_100-a_0)/t_100*t(k)[/mm]

nein sie wird kleiner, da [mm] a_{100}-a_0 [/mm] negativ.

> Mit den zwei Indices war wirklich Blödsinn. Bin noch
> MATLAB-Newbie. ;-)
>  
> Wie müssten a(t) und v(t) aussehen, wenn ich die Gleichung
> numerisch feiner unterteilen will? Sagen wir 0.1 Schritte.
>  
> a(t) = [mm]a_0[/mm] + [mm](a_100-a_0)/t_100*t[/mm]

1, warum in jedem Schritt [mm] (a_{100}-a_0 )/t_{100} [/mm] ausrechnen? das rechnet man am anfang als [mm] k=(a_{100}-a_0 )/t_{100} [/mm] aus:
Auch wenn computer heute schnel sind sollte man sie dasselbe nich immer wieder rechnen lassen. Wenn deine programme größer werden macht das was aus.
also Zeitschritt dt:
a(t)=a(t-dt)+k*dt
v(t)=v(t-1)+a(t-dt)*dt
man kann hier a(t-dt) oder a(t) nehmen, also innerhalb dt a am anfang oder am Ende.
am genauesten wäre v(t)=v(t-dt)+(a(t-dt)+a(t))/2*dt
aber immer noch die frage warum nicht [mm] v(t)=a_0*t+K/2*t^2 [/mm] lotten?
ein prigramm eine quadratische Funktion ausrechnen zu lassen  in dem man eine lineare Fkt, numerisch integriert ist ...  na ja...
das ist höchstens vernünftig, wenn du später kompliziertere a(t) als lineare planst.
Gruss leduart

>  v(t) = v(t-1)+a(t)*t*3.6
>  
> müsste ich es dann fürt = 0.4
>  a(t=0.4) = [mm]a_0[/mm] + [mm](a_100-a_0)/t_100*0.4[/mm] und
>  v(t=0.4) = v(0.3)+a(t=0.4)*0.1*3.6
>  lauten?

das wäre richtig, aber siehe oben !
gruss leduart


Bezug
                                
Bezug
Geschwindigkeitsverlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Di 05.07.2011
Autor: sashdan

Zusatzfrage:

Wie kann ich jetzt eine Beschleunigung berechnen, wenn ich nur die Geschwindigkeit kenne? Sagen wir v = 30km/h = 8.33 m/s.

Bezug
                                        
Bezug
Geschwindigkeitsverlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Di 05.07.2011
Autor: M.Rex

Hallo

Beschleunigung ist ein Maß für die Geschwiendigkeitsänderung in einer Zeit.

Nur mit der Geschwindigkeit kann man da nichts bestimmen.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de