www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Gesetz der großen Zahlen
Gesetz der großen Zahlen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesetz der großen Zahlen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:47 So 26.08.2012
Autor: anncharlot

Hallo zusammen, heute geht es mus der schwache und das starke gesetz der großen zahlen und insbesondere den unterschied zwischen den beiden.
sein X der betrag der zentrierten zufallsvariablen,

schwaches gesetz:
für eine folge von unabhängigen (bzw. unkorrelerten) zufallsvariablen mit gleichem erwartungswert und beschränkter (also existierender) Varianz gilt
lim P(X>e)=0 mit n gegen unendlich
die aussage hier ist also das für ein sehr großen stichprobenumfang sich das arithmetische mittel der zntrioerten zv gegen null konvergiert. das heißt jedoch nicht, dass z.B. bei einem münzwurfexperiment bei dem nach 10 würfen 3 mal kopf und 7 mal zahl gefallen ist sich dieser "unterschied" irgendwann ausgleichen wird also in zukunft häufiger kopf fällt.
man spricht von stochastischer konvergenz.

starkes gesetz:
für eine folge von unabhängig und identisch verteilten zv mit gleichem erwartungswert und beschränkter varianz gilt:
P(lim sup X =o)=1
da wir es mit mengen zu tun haben gibt hier der lim sup X die menge aller elemente aus der ereignissmenge an welche in unendlich vielen [mm] X_i [/mm] liegen.

hier kommt jetzt mein erstes problem: bedeuted das soviel wie: die wahrscheinlichkeit dasfür das es kein element gibt welches in allen stichproben enthalten ist ist 1 oder muss ich in dieser formulierung den lim sup X doch eher also den oberen grenzwert einer folge verstehen (also nicht als eine folge von mengen)

das zweite problem das ich habe ist das in beiden gesetzen immer angenommen wird dass der erwartungswert aller zv gleich sein muss. kann dieser denn nicht auch verschieden sein und die aussage würde für hinreichend große stichproben immernoch gültig bleiben?

lg ann

Diese Frage wurde schon in einem anderen Forum gestellt:
http://www.matheboard.de/thread.php?threadid=498656

        
Bezug
Gesetz der großen Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 30.08.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de