www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik-Sonstiges" - Gesetze der Mengenalgebra
Gesetze der Mengenalgebra < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesetze der Mengenalgebra: Graphische Darstellung
Status: (Frage) beantwortet Status 
Datum: 22:44 Do 16.10.2008
Autor: Anaximander

Ich habe große Probleme mir die Termumformungen des Assoziativ- , Distributiv- u. Kommutativgesetzes vorzustellen. Ich kann diese Gesetze auch nicht umformen.
Zum Beispiel beim Distributivgesetz: A [mm] \cap [/mm] (B U C) = (A [mm] \cap [/mm] B) U (A [mm] \cap [/mm] C)

Wer kann mir bitte helfen?

Danke

        
Bezug
Gesetze der Mengenalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Do 16.10.2008
Autor: Bastiane

Hallo Anaximander!

> Ich habe große Probleme mir die Termumformungen des
> Assoziativ- , Distributiv- u. Kommutativgesetzes
> vorzustellen. Ich kann diese Gesetze auch nicht umformen.
>  Zum Beispiel beim Distributivgesetz: A [mm]\cap[/mm] (B U C) = (A
> [mm]\cap[/mm] B) U (A [mm]\cap[/mm] C)

Oft kann man sich vorstellen, man hätte statt der Mengesymbole einfach + und * da stehen. Nehmen wir z. B. * für [mm] \cap [/mm] und +für [mm] \cup, [/mm] dann steht da:

A*(B+C)=(A*B)+(A*C)

Das kennst du doch, oder?
Nur Vorsicht, auch andersrum sind die Mengen distributiv, im Körper der rellen Zahlen gilt dies jedoch nicht andersrum.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Gesetze der Mengenalgebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Do 16.10.2008
Autor: Anaximander

Danke für den Ratschlag Bastiane, er hat mir sehr geholfen! Kannst du mir bitte deinen Hinweis mit dem Vorsichtig sein einmal einfacher erklären?
Außerdem würde ich mir diese Umformungen gerne mal zeichnerisch/graphisch anschauen. Wo geht so etwas?

Danke dir bzw. natürlich euch allen

Bezug
                        
Bezug
Gesetze der Mengenalgebra: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Do 16.10.2008
Autor: schachuzipus

Hallo Anaximander,

Bastianes Ruf nach Vorsicht bezog sich wohl auf den Vergleich von

[mm] $\cap$ [/mm] und [mm] $\cup$ [/mm] mit [mm] $\cdot{}$ [/mm] und $+$

Bei den Mengen gelten Distributivgesetze bzgl. [mm] $\cap$ [/mm] und [mm] $\cup$, [/mm] also neben

[mm] $A\cap(B\cup C)=(A\cap B)\cup(A\cap [/mm] C)$ gilt auch

[mm] $A\cup(B\cap C)=(A\cup B)\cap(A\cup [/mm] C)$

Für das erste DG gilt ein analoges DG in den reellen Zahlen [mm] $a\cdot{}(b+c)=(a\cdot{}b)+(a\cdot{}c)$, [/mm] wie Bastiane schon schrieb.

Ein analoges DG zu der zweiten Regel gilt für reellen Zahlen nicht: [mm] $a+(b\cdot{}c)\neq (a+b)\cdot{}(a+c)$ [/mm]


Zeichnerisch kannst du es wie folgt mal veranschaulichen:

Zeichne dir 3 sich schneidende Mengen $A, B, C$

Zur Veranschaulichung von [mm] $A\cap(B\cup C)=(A\cap B)\cup(A\cap [/mm] C)$ zeiche beide Seiten der Gleichung in deine Skizze:

linke Seite: schaue dir an, was [mm] $B\cup [/mm] C$ ergibt und was dann der Schnitt mit $A$ ist und male es in dein Bildchen

rechte Seite genauso: zeichne die Schnitte von $A$ und $B$ und von $A$ und $C$ ein und deren Vereinigung

Es sollten am Ende dieselben Flächenstücke bunt sein ;-)

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de