www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Gewicht zusammenstellen
Gewicht zusammenstellen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewicht zusammenstellen: Nachfrage ohne Stochastik
Status: (Frage) beantwortet Status 
Datum: 13:18 Fr 09.01.2009
Autor: svcds

Aufgabe
Welche Gewichte kann man mit einem Gewichtssatz herstellen, der aus je einem 1 gr-, 2 gr-, 4 gr-, 8 gr-, 16 gr-, 32 gr-, 64 gr-, 128 gr-Stück
besteht? Und: wie viele Gewichte kann man damit herstellen ?

Hi also diese Aufgabe.

Ich hab das mit stochastischen Mitteln gelöst, also die Mächtigkeit der Potenzmenge, also | [mm] \mathcal{P} [/mm] | = [mm] 2^{n} [/mm] also hier [mm] 2^{8} [/mm] = 256 Gewichte, hier muss man aber die leere Menge also [mm] {\emptyset} [/mm] abziehen, also 255 am Ende.

Man kann auch sagen am Anfang hat man 1 Gewicht aus 8, dann 2 Gewichte aus 8... also

[mm] \vektor{8 \\ 1} [/mm] + [mm] \vektor{8 \\ 2} [/mm] + .... + [mm] \vektor{8 \\ 8} [/mm] = 255

Wie zeigt man das aber arithmetisch bzw. zahlentheoretisch?

Kann man auch sagen, dass die Gewichte so zusammengestellt werden können, sodass gilt

x [mm] \equiv [/mm] x mod [mm] 2^{8} [/mm] also x [mm] \equiv [/mm] x mod 256 ?

LG KNUT

        
Bezug
Gewicht zusammenstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Fr 09.01.2009
Autor: reverend

Hallo Knut,

die stochastische Lösung geht nur aufgrund der speziellen Verteilung der Gewichte. Im besonderen gilt für [mm] n\ge2: a_n>\summe_{i=1}^{n-1}a_i [/mm]

Wenn die Gewichte z.B. 1,3,4,7,13,28,63,119 wären, wäre die Lage doch schon erheblich unübersichtlicher, außerdem gibt es dann so Unschönheiten wie 1+3=4, 3+4=7, 1+13=3+4+7,
1+3+4+7+13=28, 1+3+4+7+13+28+63=119 etc.
Manche Gewichte ließen sich dann also auf zwei (oder mehr?) Weisen darstellen, andere gar nicht, z.B. 57 bis 62.

Zahlentheoretisch bist Du hier übrigens ganz schnell fertig, wenn Du die Gewichte im Binärsystem darstellst. Dann sind alle Zahlen von [mm] 1_2 [/mm] bis [mm] 11111111_2 [/mm] darstellbar, also genau [mm] 2^8-1=255. [/mm]

Aber das hattest Du ja längst raus.

Grüße,
reverend

Bezug
                
Bezug
Gewicht zusammenstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Fr 09.01.2009
Autor: svcds

meinst du ich kann das dann so stehen lassen?

Bezug
                        
Bezug
Gewicht zusammenstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Fr 09.01.2009
Autor: reverend

Was wie stehenlassen?

Dein erster Post enthält die richtigen Gedanken, aber noch keinen Nachweis.

Bezug
                                
Bezug
Gewicht zusammenstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Sa 10.01.2009
Autor: svcds

da steht ja auch in der Aufgabenstellung nicht "Beweisen" oder "Zeigen Sie", also wenn ich das mit arithmetikmitteln mache, muss ich das mit dem Binärsystem machen? Und wenn ich das dann habe, wie schreib ich das genau auf?

Bezug
                                        
Bezug
Gewicht zusammenstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Sa 10.01.2009
Autor: reverend

Stimmt, so formal liest sich die Aufgabenstellung gar nicht.
Dann genügt es wahrscheinlich, zu sagen, dass die Binärdarstellung der Gewichte folgende ist:

         1
        10
       100
      1000
     10000
    100000
   1000000
  10000000

und sich daher alle Zahlen von 1 bis 11111111 darstellen lassen, dezimal: 1 bis [mm] 2^8-1=255. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de