www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Gewinnentwicklung
Gewinnentwicklung < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewinnentwicklung: Probleme beim auflösen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:23 Mo 31.01.2011
Autor: dusty1993

Aufgabe
Die Gewinnentwicklung beim Absatz eines neues Produktes wird durch die Funktion Ga(t) = [mm] 5e^{0,1t-0,01at^2}-3 [/mm] beschrieben. t gibt die Zeit in Monaten an und G denn Gewinn in GE (1 GE = 10000Euro). a ist der Parameter, der von der Mitarbeiterzahl abhängt.

a) Ermittlung Gewinnzone (a = 1)
b) Zeitpunkt des maximalen Gewinns in Abhängigkeit von a
c) Zeitpunkt des größten Gewinnrückgangs in Abhängigkeit von a
d) Verlust im 2. Jahr und die ökonomische Bedeutung dieser Entwicklung


So also ich habe hier schon mal die Ableitungen:

Ga'(t) = 5(0,1 - 0,02at) e^(o,1t - [mm] 0,01at^2) [/mm]
Ga''(t) = 5(0,01 - 0,02a - 0,00a at + [mm] 0,0004a^2t^2)e^{0,1t-0,01at^2} [/mm]

die 3. brauchen wir nicht machen

bei a muss ich ja G(t) = 0 setzen und bekomme t1 = 13,72 und t2 = -3,72 raus (das müsste auch richtig sein)

bei b) muss ich Ga'(t) = 0 und nach Null auflösen:
5(0,1  0,02at) e^(0,1t - [mm] 0,01at^2) [/mm] = 0  dann ist

1.   5(0,1  0,02at) = 0
hier weiß ich aber nicht wie ich das mit dem a auflösen soll....

2. e^(0,1t - [mm] 0,01at^2) [/mm] = 0 (was ja nicht wahr ist, somit ist die Gleichung nicht lösbar)

bei c) muss ich ja den Wendepunkt berechnen, also Ga''(t) = 0

aber auch hier habe ich wieder das Problem mit dem a, da ich nicht weiß wie ich das auflösen kann...

und bei d) denke ich das ich einfach nur Ga(24)=... ausrechnen muss, je doch ist auch da wieder das a in der Gleichung....

Ich schaffe es also nicht, die Gleichung wegen dem a aufzulösen.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Di 01.02.2011
Autor: angela.h.b.


> Die Gewinnentwicklung beim Absatz eines neues Produktes
> wird durch die Funktion Ga(t) = [mm]5e^{0,1t-0,01at^2}-3[/mm]
> beschrieben. t gibt die Zeit in Monaten an und G denn
> Gewinn in GE (1 GE = 10000Euro). a ist der Parameter, der
> von der Mitarbeiterzahl abhängt.
>  
> a) Ermittlung Gewinnzone (a = 1)
>  b) Zeitpunkt des maximalen Gewinns in Abhängigkeit von a
>  c) Zeitpunkt des größten Gewinnrückgangs in
> Abhängigkeit von a
>  d) Verlust im 2. Jahr und die ökonomische Bedeutung
> dieser Entwicklung
>  
> So also ich habe hier schon mal die Ableitungen:
>  
> Ga'(t) = 5(0,1 - 0,02at) e^(o,1t - [mm]0,01at^2)[/mm]
>  Ga''(t) = 5(0,01 - 0,02a - 0,004 at [mm] +0,0004a^2t^2)e^{0,1t-0,01at^2} [/mm]

>  
> die 3. brauchen wir nicht machen
>  
> bei a muss ich ja G(t) = 0 setzen und bekomme t1 = 13,72
> und t2 = -3,72 raus (das müsste auch richtig sein)
>  
> bei b) muss ich Ga'(t) = 0 und nach Null auflösen:
>   5(0,1  0,02at) e^(0,1t - [mm]0,01at^2)[/mm] = 0  dann ist
>
> 1.   [mm] 5(0,1\red{-}0,02at) [/mm] = 0
> hier weiß ich aber nicht wie ich das mit dem a auflösen
> soll....

Hallo,

[willkommenmr].

Behandle a so, also stünde dort irgendeine Zahl.
Für a=0 gibt es keine Lösung.

In allen anderen Fällen:

[mm] 5(0,1\red-0,02at) [/mm] = 0
<==>
[mm] 0,1\red{-}0,02at [/mm] = 0
<==>
0.1=0,02at
<==>
[mm] \bruch{0.1}{0.02a}=t. [/mm]

>  
> 2. e^(0,1t - [mm]0,01at^2)[/mm] = 0 (was ja nicht wahr ist, somit
> ist die Gleichung nicht lösbar)

Ja.

>  
> bei c) muss ich ja den Wendepunkt berechnen, also Ga''(t) =
> 0
>  
> aber auch hier habe ich wieder das Problem mit dem a, da
> ich nicht weiß wie ich das auflösen kann...


Du willst sicher 0,01 - 0,02a - 0,004 at [mm] +0,0004a^2t^2=0 [/mm] lösen.

Betrachte die Gleichung so:

[mm] \red{0.0004a}*t^2- [/mm] 0.004a*t + (0.01-0.02a)=0

Gruß v. Angela







Bezug
                
Bezug
Gewinnentwicklung: Gleichung auflösen
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 01.02.2011
Autor: dusty1993

Also > > Die Gewinnentwicklung beim Absatz eines neues Produktes
> > wird durch die Funktion Ga(t) = [mm]5e^{0,1t-0,01at^2}-3[/mm]
> > beschrieben. t gibt die Zeit in Monaten an und G denn
> > Gewinn in GE (1 GE = 10000Euro). a ist der Parameter, der
> > von der Mitarbeiterzahl abhängt.
>  >  
> > a) Ermittlung Gewinnzone (a = 1)
>  >  b) Zeitpunkt des maximalen Gewinns in Abhängigkeit von
> a
>  >  c) Zeitpunkt des größten Gewinnrückgangs in
> > Abhängigkeit von a
>  >  d) Verlust im 2. Jahr und die ökonomische Bedeutung
> > dieser Entwicklung
>  >  
> > So also ich habe hier schon mal die Ableitungen:
>  >  
> > Ga'(t) = 5(0,1 - 0,02at) e^(o,1t - [mm]0,01at^2)[/mm]
>  >  Ga''(t) = 5(0,01 - 0,02a - 0,004 at
> [mm]+0,0004a^2t^2)e^{0,1t-0,01at^2}[/mm]
>  
> >  

> > die 3. brauchen wir nicht machen
>  >  
> > bei a muss ich ja G(t) = 0 setzen und bekomme t1 = 13,72
> > und t2 = -3,72 raus (das müsste auch richtig sein)
>  >  
> > bei b) muss ich Ga'(t) = 0 und nach Null auflösen:
>  >   5(0,1  0,02at) e^(0,1t - [mm]0,01at^2)[/mm] = 0  dann ist
> >
> > 1.   [mm]5(0,1\red{-}0,02at)[/mm] = 0
> > hier weiß ich aber nicht wie ich das mit dem a auflösen
> > soll....
>  
> Hallo,
>  
> [willkommenmr].
>  
> Behandle a so, also stünde dort irgendeine Zahl.
>  Für a=0 gibt es keine Lösung.
>  
> In allen anderen Fällen:
>  
> [mm]5(0,1\red-0,02at)[/mm] = 0
>  <==>
>  [mm]0,1\red{-}0,02at[/mm] = 0
>  <==>
>  0.1=0,02at
>  <==>
>  [mm]\bruch{0.1}{0.02a}=t.[/mm]
>  
> >  

> > 2. e^(0,1t - [mm]0,01at^2)[/mm] = 0 (was ja nicht wahr ist, somit
> > ist die Gleichung nicht lösbar)
>  
> Ja.
>  
> >  

> > bei c) muss ich ja den Wendepunkt berechnen, also Ga''(t) =
> > 0
>  >  
> > aber auch hier habe ich wieder das Problem mit dem a, da
> > ich nicht weiß wie ich das auflösen kann...
>  
>
> Du willst sicher 0,01 - 0,02a - 0,004 at [mm]+0,0004a^2t^2=0[/mm]
> lösen.

Hast du nicht vergessen das [mm] a^2 [/mm] mit zu übernehmen bei [mm] 0,0004^2t^2: [/mm]  

>  
> Betrachte die Gleichung so:
>  
> [mm]\red{0.0004a}*t^2-[/mm] 0.004a*t + (0.01-0.02a)=0
>  
> Gruß v. Angela


also deine Antwort zu b) klingt mir logisch, das habe ich auch verstanden,
aber c) weiß ich nicht ganz wie ich das lösen soll.:

da steht ja nun die Gleichung:

[mm] {0.0004a^2}*t^2-0.004a*t [/mm] + (0.01-0.02a)=0

Diese Gleichung kann man ja jetzt mit der pq-Formel lösen, muss aber vorher durch [mm] 0,0004a^2 [/mm] teilen:

[mm] t^2 [/mm] - [mm] \bruch{2-0.004a*t}{0.0004a^2} [/mm] + [mm] \bruch{(0.01-0.02a)}{0.0004a^2} [/mm] = 0

und das sieht jetzt wieder so kompliziert aus ??? Gibt es vielleicht eine einfachere Schreibweise?

Und was ist eigentlich mit Teil d) ?

Bezug
                        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 01.02.2011
Autor: MathePower

Hallo dusty1993,

>  aber c) weiß ich nicht ganz wie ich das lösen soll.:
>  
> da steht ja nun die Gleichung:
>
> [mm]{0.0004a^2}*t^2-0.004a*t[/mm] + (0.01-0.02a)=0
>  
> Diese Gleichung kann man ja jetzt mit der pq-Formel lösen,
> muss aber vorher durch [mm]0,0004a^2[/mm] teilen:
>  
> [mm]t^2[/mm] - [mm]\bruch{2-0.004a*t}{0.0004a^2}[/mm] +
> [mm]\bruch{(0.01-0.02a)}{0.0004a^2}[/mm] = 0
>  
> und das sieht jetzt wieder so kompliziert aus ??? Gibt es
> vielleicht eine einfachere Schreibweise?
>  


Die Gleichung

[mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]

kannst Du als vollständige Quadrat plus Zahl schreiben:

[mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]

Damit ist das dann ohne pq-Formel lösbar.


> Und was ist eigentlich mit Teil d) ?


Gruss
MathePower

Bezug
                                
Bezug
Gewinnentwicklung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:04 Di 01.02.2011
Autor: dusty1993


> Die Gleichung
>  
> [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  
> kannst Du als vollständige Quadrat plus Zahl schreiben:
>  
> [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  
> Damit ist das dann ohne pq-Formel lösbar.

Wie meinst du das?

Bezug
                                        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Di 01.02.2011
Autor: meili

Hallo,

> > Die Gleichung
>  >  
> > [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  >  
> > kannst Du als vollständige Quadrat plus Zahl schreiben:
>  >  
> > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]

Diese Gleichung lässt sich nach t auflösen, indem man zuerst [mm] $-\gamma$ [/mm] addiert,
dann Wurzeln zieht, und dann das t auf der linken Seite weiter isoliert.

>  >  
> > Damit ist das dann ohne pq-Formel lösbar.
>  
> Wie meinst du das?

Gruß
meili

Bezug
                                                
Bezug
Gewinnentwicklung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:41 Di 01.02.2011
Autor: dusty1993


> Hallo,
>  
> > > Die Gleichung
>  >  >  
> > > [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  >  >  
> > > kannst Du als vollständige Quadrat plus Zahl schreiben:
>  >  >  
> > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  Diese Gleichung lässt sich nach t auflösen, indem man
> zuerst [mm]-\gamma[/mm] addiert,
> dann Wurzeln zieht, und dann das t auf der linken Seite
> weiter isoliert.
>  >  >  
> > > Damit ist das dann ohne pq-Formel lösbar.
>  >  
> > Wie meinst du das?

Meine Frage war viel mehr, wie man die 1. Gleichung in das vollständige Quadrat umwandelt? Weil hier [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm] stehen ja keine Zahlen mehr drinne (die müssten doch auch noch eingesetzt werden?).

Sonst rechnet man doch einfach:

[mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]  | - [mm] \gamma [/mm]
[mm][mm] \left(\alpha+\beta*t\right)^{2} [/mm] = - [mm] \gamma [/mm]   | Wurzel ziehen
[mm][mm] \alpha+\beta*t [/mm] = - [mm] \gamma [/mm]  | [mm] -\alpha [/mm]
[mm] \beta*t [/mm] = - [mm] \gamma -\alpha [/mm]  | : [mm] \beta [/mm]
t = [mm] \bruch{ - \gamma -\alpha }{\beta} [/mm]


(Sorry wenn die Rechnung bisschen komisch aussieht, die Formeln wollen nicht so wie ich das will)



Bezug
                                                        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Di 01.02.2011
Autor: MathePower

Hallo dusty1993,

> > Hallo,
>  >  
> > > > Die Gleichung
>  >  >  >  
> > > > [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  >  >  >  
> > > > kannst Du als vollständige Quadrat plus Zahl schreiben:
>  >  >  >  
> > > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  >  Diese Gleichung lässt sich nach t auflösen, indem man
> > zuerst [mm]-\gamma[/mm] addiert,
> > dann Wurzeln zieht, und dann das t auf der linken Seite
> > weiter isoliert.
>  >  >  >  
> > > > Damit ist das dann ohne pq-Formel lösbar.
>  >  >  
> > > Wie meinst du das?
>
> Meine Frage war viel mehr, wie man die 1. Gleichung in das
> vollständige Quadrat umwandelt? Weil hier
> [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm] stehen ja keine
> Zahlen mehr drinne (die müssten doch auch noch eingesetzt
> werden?).



Multipliziere die Gleichung

[mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]

aus und vergleiche sie mit

[mm]{0.0004a^2}\cdot{}t^2-0.004a\cdot{}t + (0.01-0.02a)=0[/mm]


>  
> Sonst rechnet man doch einfach:
>  
> [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]  | - [mm]\gamma[/mm]
>  [mm][mm]\left(\alpha+\beta*t\right)^{2}[/mm] = - [mm]\gamma[/mm] | Wurzel ziehen [mm][mm]\alpha+\beta*t[/mm] = - [mm]\gamma[/mm] | [mm]-\alpha[/mm] > [mm]\beta*t[/mm] = - [mm]\gamma -\alpha[/mm] | : [mm]\beta[/mm][/mm][/mm]
> [mm][mm] t = [mm]\bruch{ - \gamma -\alpha }{\beta}[/mm][/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm][/mm][/mm]
> [mm][mm](Sorry wenn die Rechnung bisschen komisch aussieht, die Formeln wollen nicht so wie ich das will)[/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm] [/mm][/mm]


Gruss
MathePower

Bezug
                                                                
Bezug
Gewinnentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Di 01.02.2011
Autor: dusty1993


> Hallo dusty1993,
>  
> > > Hallo,
>  >  >  
> > > > > Die Gleichung
>  >  >  >  >  
> > > > > [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  >  >  >  
> >  

> > > > > kannst Du als vollständige Quadrat plus Zahl schreiben:
>  >  >  >  >  
> > > > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  >  >  Diese Gleichung lässt sich nach t auflösen, indem
> man
> > > zuerst [mm]-\gamma[/mm] addiert,
> > > dann Wurzeln zieht, und dann das t auf der linken Seite
> > > weiter isoliert.
>  >  >  >  >  
> > > > > Damit ist das dann ohne pq-Formel lösbar.
>  >  >  >  
> > > > Wie meinst du das?
> >
> > Meine Frage war viel mehr, wie man die 1. Gleichung in das
> > vollständige Quadrat umwandelt? Weil hier
> > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm] stehen ja keine
> > Zahlen mehr drinne (die müssten doch auch noch eingesetzt
> > werden?).
>  
>
>
> Multipliziere die Gleichung
>
> [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  
> aus und vergleiche sie mit
>  
> [mm]{0.0004a^2}\cdot{}t^2-0.004a\cdot{}t + (0.01-0.02a)=0[/mm]
>  

wenn ich das Quadrat (also nur die Klammer) ausmultipliziere komme ich aber auf:
[mm] a^2 [/mm] + [mm] 2a\beta [/mm] + 2at + [mm] 2t\beta [/mm] + [mm] \beta^2 [/mm] + [mm] t^2 [/mm]

aber was hat das bitte nun mit der anderen Gleichung zu tun?


Bezug
                                                                        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Di 01.02.2011
Autor: MathePower

Hallo dusty1993,

> > Hallo dusty1993,
>  >  
> > > > Hallo,
>  >  >  >  
> > > > > > Die Gleichung
>  >  >  >  >  >  
> > > > > > [mm]{0.0004a^2}*t^2-0.004a*t + (0.01-0.02a)=0[/mm]
>  >  >  
> >  >  

> > >  

> > > > > > kannst Du als vollständige Quadrat plus Zahl schreiben:
>  >  >  >  >  >  
> > > > > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  >  >  >  Diese Gleichung lässt sich nach t auflösen,
> indem
> > man
> > > > zuerst [mm]-\gamma[/mm] addiert,
> > > > dann Wurzeln zieht, und dann das t auf der linken Seite
> > > > weiter isoliert.
>  >  >  >  >  >  
> > > > > > Damit ist das dann ohne pq-Formel lösbar.
>  >  >  >  >  
> > > > > Wie meinst du das?
> > >
> > > Meine Frage war viel mehr, wie man die 1. Gleichung in das
> > > vollständige Quadrat umwandelt? Weil hier
> > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm] stehen ja keine
> > > Zahlen mehr drinne (die müssten doch auch noch eingesetzt
> > > werden?).
>  >  
> >
> >
> > Multipliziere die Gleichung
> >
> > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  >  
> > aus und vergleiche sie mit
>  >  
> > [mm]{0.0004a^2}\cdot{}t^2-0.004a\cdot{}t + (0.01-0.02a)=0[/mm]
>  >  
>
> wenn ich das Quadrat (also nur die Klammer)
> ausmultipliziere komme ich aber auf:
>  [mm]a^2[/mm] + [mm]2a\beta[/mm] + 2at + [mm]2t\beta[/mm] + [mm]\beta^2[/mm] + [mm]t^2[/mm]
>  
> aber was hat das bitte nun mit der anderen Gleichung zu
> tun?
>


Mit Hilfe der anderen Gleichung kannst
Du die Koeffizienten [mm]\alpha, \ \beta,\ \gamma[/mm] bestimmen.
  

Gruss
MathePower

Bezug
                                                                                
Bezug
Gewinnentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 01.02.2011
Autor: dusty1993


> > > Multipliziere die Gleichung
> > >
> > > [mm]\left(\alpha+\beta*t\right)^{2}+\gamma=0[/mm]
>  >  >  
> > > aus und vergleiche sie mit
>  >  >  
> > > [mm]{0.0004a^2}\cdot{}t^2-0.004a\cdot{}t + (0.01-0.02a)=0[/mm]
>  
> >  >  

> >
> > wenn ich das Quadrat (also nur die Klammer)
> > ausmultipliziere komme ich aber auf:
>  >  [mm]a^2[/mm] + [mm]2a\beta[/mm] + 2at + [mm]2t\beta[/mm] + [mm]\beta^2[/mm] + [mm]t^2[/mm]
>  >  
> > aber was hat das bitte nun mit der anderen Gleichung zu
> > tun?
>  >

>
>
> Mit Hilfe der anderen Gleichung kannst
>  Du die Koeffizienten [mm]\alpha, \ \beta,\ \gamma[/mm] bestimmen.

>

Ich habe ehrlich gesagt keine Ahnung wie das gehen soll und bin gerade ziemlich ratlos, wie ich das hinbekommen soll.
Dieses Thema kommt mir auch ehrlich gesagt nicht wirklich bekannt vor. Kann vielleicht jemand mal zeigen wie das funktionieren soll mit dem Koeffizienten bestimmen??? Wäre ehct lieb.

Damit wäre dann der Aufgabenteil c) auch gelöst.
Bei d) habe ich wie gesgat immer noch die Frage ob der Ansatz richtig ist!

Danke für die zahlreiche Hilfe. Bin im Moment ziemlich ratlos mit der Aufgabe!

Bezug
                                                                                        
Bezug
Gewinnentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 02.02.2011
Autor: meili

Hallo,

mir scheint, Dir ist beim Ausmultiplieren von  $ [mm] \left(\alpha+\beta\cdot{}t\right)^{2} [/mm] $ ein Fehler unterlaufen.
$ [mm] \left(\alpha+\beta\cdot{}t\right)^{2} [/mm] = [mm] \alpha^2 [/mm] + [mm] 2\alpha\beta [/mm] t + [mm] \beta^2 t^2 [/mm] $  (Siehe MBbinomische Formel mit a = [mm] $\alpha$, [/mm] b = [mm] $\beta [/mm] t$)

Also hast Du einmal
[mm] $\alpha^2 [/mm] + [mm] 2\alpha\beta [/mm] t + [mm] \beta^2 t^2 [/mm]  + [mm] \gamma [/mm] = 0$

und das andere mal
$ [mm] {0.0004a^2}\cdot{}t^2-0.004a\cdot{}t [/mm] + (0.01-0.02a)=0 $.

Was sind die Koeffizienten von [mm] $t^2, [/mm] t$ und der Teil ohne [mm] $\cdot [/mm] t$ bei der 1. und bei der 2. Gleichung? (Das ist der Koeffizientenvergleich.)

Wenn Du diese Koeffizienten bei der 2. Gleichung  gefunden hast, kannst Du die 2. Gleichung auf die Form  $ [mm] \left(\alpha+\beta\cdot{}t\right)^{2}+\gamma=0 [/mm] $ bringen.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de