www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Gilt hier das Wurzelgesetz?
Gilt hier das Wurzelgesetz? < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gilt hier das Wurzelgesetz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 17.10.2009
Autor: hotsauce

Hi Leute!

Gibts hier einen Unterschied:

[mm] \wurzel[4]{x^4} [/mm]

[mm] (\wurzel[4]{x})^4 [/mm]

laut den wurzelgesetzen müsste doch das untere dasselbe sein wie das obere oder nicht?, denn der exponent nach der klammer wird einfach übernommen und dann sieht das doch alles gleich aus oder irre ich mich da?

folgendes gesetz mein ich:
[mm] (\wurzel[n]{3})^m=\wurzel[n]{3^m} [/mm]



        
Bezug
Gilt hier das Wurzelgesetz?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Sa 17.10.2009
Autor: schachuzipus

Hallo hotsauce,


> Hi Leute!
>  
> Gibts hier einen Unterschied:
>  
> [mm]\wurzel[4]{x^4}[/mm]
>  
> [mm](\wurzel[4]{x})^4[/mm]
>  
> laut den wurzelgesetzen müsste doch das untere dasselbe
> sein wie das obere oder nicht?, [ok] denn der exponent nach der
> klammer wird einfach übernommen und dann sieht das doch
> alles gleich aus oder irre ich mich da?
>  
> folgendes gesetz mein ich:
>  [mm](\wurzel[n]{3})^m=\wurzel[n]{3^m}[/mm] [ok]

Ganz recht! Du kannst es dir herleiten, wenn du es in Potenzen umschreibst und dann die bekannten Potenzgesetze anwendest...

[mm] $\left[\blue{\sqrt[n]{3}}\right]^m=\left[\blue{3^{\frac{1}{n}}}\right]^m=3^{\frac{m}{n}}=\sqrt[n]{3^m}$ [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Gilt hier das Wurzelgesetz?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Sa 17.10.2009
Autor: hotsauce

ok gut,

jetzt lautet die frage: für welche x sind diese terme definiert die ich oben genannt habe.

fürs erste gilt ja:
[mm] \wurzel[4]{x^4}=x^\bruch{4}{4}=x [/mm] d.h. Definiert ist x für alle [mm] \IR, [/mm] also |x|

beim zweiten term heißt das ergebnis jedoch nur x und hier kommt meine frage: wieso nur x, wenn die beiden terme gleichwertig sind?...

was mir eben beim wurzelgesetz aufgefallen ist, dass der exponent einfach unter die wurzel übernommen wird. beim wurzelgesetz ist doch [mm] n\not=m [/mm] und bei meiner aufgabe wäre m=n oder lieg ich da falsch?

Bezug
                        
Bezug
Gilt hier das Wurzelgesetz?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Sa 17.10.2009
Autor: leduart

Hallo
die Wurzelschreibweise ist altmodisch und eigentlich ueberholt. Besser man schreibt statt
[mm] \wurzel[n]{x}=x^{\bruch{1}{n}} [/mm]
dann sind die Wurzelgesetze allgemeingueltig und einfach die [mm] Potenzgesetze:(x^a)^b=x^{a*b}=x^{b*a}=(x^b)^a [/mm]
jetzt ist aber [mm] x^a [/mm] fuer negative x nur definiert (innerhalb der reellen Zahlen), wenn a ne ganze Zahl ist. d.h. fur x<0 ist [mm] x^{1/4} [/mm] nicht definiert.
und eine nicht definierte Zahl kann man auch nicht in die 4.te Potenz erheben.
in diesem Sinne ist [mm] (x^{1/4})^4 [/mm] nicht definiert.
dagegen ist [mm] (x^4)^{1/4} [/mm] definiert, weil [mm] x>4\ge0 [/mm] ist unabhaengig von x.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de