www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Gleichgewichtsbedingungen
Gleichgewichtsbedingungen < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichgewichtsbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Mi 20.10.2010
Autor: ICG

Hallo, ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt, es geht um ein Kräftedreieck, welches ich versuche durch Anwendung von Gleichgewichtsbedingungen rein analytisch zu lösen, gesucht "Z".
Dabei wurde ein Koordienantensystem gewählt x, y und die Komponenten der Kräfte in die entsprechenden Richtungen ermittelt.

In x-Richtung=0: [mm] X\sin\alpha+Y\sin\beta-Z\cos\gamma=0 [/mm]
              -> [mm] Z\cos\gamma=X\sin\alpha+Y\sin\beta [/mm]

In y-Richtung=0: [mm] -X\cos\alpha+Y\cos\beta-Z\sin\gamma=0 [/mm]
              -> [mm] Z\sin\gamma=-X\cos\alpha+Y\cos\beta [/mm]

Was ich bisher gemacht habe ist:
Die beiden umgestellen Gleichungen quadriert

Gleichung1: [mm] Z^2\cos^2\gamma=X^2\sin^2\alpha+2XY\sin\alpha\sin\beta+Y^2\sin^2\beta [/mm]
Gleichung2: [mm] Z^2\sin^2\gamma=X^2\cos^2\alpha-2XY\cos\alpha\cos\beta+Y^2\cos^2\beta [/mm]

[mm] \cos^2+\sin^2=1 [/mm]   ->   [mm] \sin^2=1-\cos^2 [/mm]

Gleichung2(linker Teil): [mm] Z^2\sin^2\gamma [/mm]   ->   [mm] Z^2(1-\cos^2) [/mm]    ->   [mm] Z^2-Z^2*\cos^2 [/mm]

daraus folgt:
[mm] Z^2-Z^2*\cos^2=X^2\cos^2\alpha-2XY\cos\alpha\cos\beta+Y^2\cos^2\beta [/mm]

in Gleichung1 findet sich [mm] Z^2*\cos^2 [/mm] somit setze ich den rechten Teil in die zweite Gleichung:
[mm] Z^2-(X^2\sin^2\alpha+2XY\sin\alpha\sin\beta+Y^2\sin^2\beta)=X^2\cos^2\alpha-2XY\cos\alpha\cos\beta+Y^2\cos^2\beta [/mm]

umgestellt nach Z
[mm] Z^2=X^2\cos^2\alpha-2XY\cos\alpha\cos\beta+Y^2\cos^2\beta+X^2\sin^2\alpha+2XY\sin\alpha\sin\beta+Y^2\sin^2\beta [/mm]

[mm] Z^2=(X\cos\alpha-Y\cos\beta)^2 [/mm]             +     [mm] (X\sin\alpha+Y\sin\beta)^2 [/mm]

[mm] Z^2=X^2+Y^2-2XY\cos(\alpha+\beta) [/mm]

Vom vorletzten Schritt zum letzten, kommen wohl die Additionstheoreme dran, oder? [mm] \cos(\alpha+\beta)=\cos\alpha*\cos\beta-\sin\alpha*\sin\beta [/mm]
Ich weiß das mein Ergebnis stimmt, habe es in WolframAlpha eingegeben, mir wird nur nicht ganz klar, was da genau passiert, mag mir das mal einer erklären?





        
Bezug
Gleichgewichtsbedingungen: binomische Formel!
Status: (Antwort) fertig Status 
Datum: 23:06 Mi 20.10.2010
Autor: Loddar

Hallo ICG,

[willkommenvh] !!


Beim Quadrieren einer Summe solltest Du auch an die binomischen Formeln denken, da i.Allg. gilt:

[mm](a+b)^2 \ \red{\not=} \ a^2+b^2[/mm]


Gruß
Loddar



Bezug
                
Bezug
Gleichgewichtsbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Do 21.10.2010
Autor: ICG

Danke Loddar für deine Hilfe, das war ja nen Epic Fail von mir...

Ich habe meinen Anfangspost editiert/verbessert, mir erschließt sich nur noch nicht ganz, was beim vorletzten Schritt zum letzten passiert.

Bezug
                        
Bezug
Gleichgewichtsbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 21.10.2010
Autor: reverend

Hallo ICG,

nennen wir die drittletzte Zeile mal (s), die vorletzte (t) und die letzte (u):


(s) $ [mm] Z^2=X^2\cos^2\alpha-2XY\cos\alpha\cos\beta+Y^2\cos^2\beta+X^2\sin^2\alpha+2XY\sin\alpha\sin\beta+Y^2\sin^2\beta [/mm] $

(t) $ [mm] Z^2=(X\cos\alpha-Y\cos\beta)^2 [/mm] $             +     $ [mm] (X\sin\alpha+Y\sin\beta)^2 [/mm] $

(u) $ [mm] Z^2=X^2+Y^2-2XY\cos(\alpha+\beta) [/mm] $

Nun ist die Umformung (s) [mm] \to [/mm] (t) leicht mit den binomischen Formeln möglich.

Die Umformung (s) [mm] \to [/mm] (u) ist unter Zuhilfenahme des "trigonometrischen Pythagoras" und des von Dir schon angeführten Additionstheorems $ [mm] \cos(\alpha+\beta)=\cos\alpha\cdot{}\cos\beta-\sin\alpha\cdot{}\sin\beta [/mm] $ ebenfalls leicht möglich.

Die direkte Umformung (t) [mm] \to [/mm] (u) ist dagegen ohne Umweg über (s) nicht verständlich.

Ich vermute daher, dass die Musterlösung einfach am Ende zwei mögliche Zusammenfassungen von (s) präsentieren will. Welche davon zur Weiterarbeit besser geeignet ist, entscheidet sich ja manchmal daran, welche Größen besser gemessen werden können bzw. schon aus Messungen vorliegen, bzw. was man eigentlich ermitteln will.

Dass (t) und (u) beide angegeben sind, liegt wohl vor allem daran, dass die Umformung von der einen in die andere eben nicht offensichtlich ist.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de