www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Gleichheit zweier Mengen
Gleichheit zweier Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichheit zweier Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 07.11.2010
Autor: dxlegends

Aufgabe
Beweisen oder widerlegen Sie: Zwei endliche Mengen sind genau dann gleich, wenn ihre Potenzmengen gleich sind.

Ich weiß nicht, wie ich den Beweis angehen soll, obgleich ich mir relativ sicher bin, dass die Aussage der Wahrheit entspricht, da die Elemente, die in der Potenzmenge enthalten sind auch in der Ausgangsmenge enthalten sein müssen.
Sind nun die Potenzmengen gleich, müssen die Mengen ja auch die Selben Elemente haben.
Nur finde ich leider absolut keinen Einstiegspunkt für den Beweis.
Die einzige Idee die ich hatte, wäre zwei Mengen zu erstellen, die die selben Elemente enthalten, vielleicht mit einigen mehrfach, vielleicht in einer anderen Reihenfolge (wobei diese ja ohnehin keine rolle spielen sollte )
Würde ich nun von beiden die Potenzmenge bilden, müsste diese ja auch identisch sein.
Ich wäre sehr dankbar für einige Denkanstöße :)


        
Bezug
Gleichheit zweier Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 07.11.2010
Autor: Lippel


> Beweisen oder widerlegen Sie: Zwei endliche Mengen sind
> genau dann gleich, wenn ihre Potenzmengen gleich sind.

Im Grunde sind ja zwei Aussagen zu zeigen, wobei hoffentlich klar ist, dass wenn zwei Mengen gleich sind, dass ihre Potenzmengen ebenfalls gleich sind.

Nun müssen wir zeigen, dass aus der Gleichheit der Potenzmengen auch die Gleichheit der Mengen selbst folgt:
Nehme also zwei Mengen $A,B$, für die gilt $P(A) = P(B)$ und nehme an es würde gelten $A [mm] \not=B$ [/mm] (Beweis durch Widerspruch). Daraus folgt oBdA: es existiert $a [mm] \in [/mm] A$ mit $a [mm] \not\in [/mm] B$.
Was kannst du nun daraus folgern?

Viele Grüße, Lippel

Bezug
                
Bezug
Gleichheit zweier Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 07.11.2010
Autor: dxlegends

Mein Weg wäre jetzt:
A,B [mm] \not= \emptyset [/mm]

a [mm] \in [/mm] A [mm] \wedge [/mm] b [mm] \in [/mm] B [mm] \gdw [/mm] (a,b) [mm] \in \mathcal{P}_{A} [/mm]
                              [mm] \gdw [/mm] (a,b) [mm] \in \mathcal{P}_{B} [/mm]
                              [mm] \gdw [/mm] (a,b) [mm] \in \mathcal{P}_{A} \wedge \mathcal{P}_{B} [/mm]
                              [mm] \gdw \mathcal{P}_{A} [/mm] = [mm] \mathcal{P}_{B} [/mm]

wäre das so richtig bewiesen? :)

Bezug
                        
Bezug
Gleichheit zweier Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 07.11.2010
Autor: angela.h.b.


> Mein Weg wäre jetzt:
>  A,B [mm]\not= \emptyset[/mm]
>  
> a [mm]\in[/mm] A [mm]\wedge[/mm] b [mm]\in[/mm] B [mm]\gdw[/mm] (a,b) [mm]\in \mathcal{P}_{A}[/mm]
>      
>                          [mm]\gdw[/mm] (a,b) [mm]\in \mathcal{P}_{B}[/mm]
>    
>                            [mm]\gdw[/mm] (a,b) [mm]\in \mathcal{P}_{A} \wedge \mathcal{P}_{B}[/mm]
>  
>                               [mm]\gdw \mathcal{P}_{A}[/mm] =
> [mm]\mathcal{P}_{B}[/mm]
>  
> wäre das so richtig bewiesen? :)

Hallo,

mit Sicherheit nicht.

Am besten überlegst Du Dir erstmal, was überhaupt zu zeigen ist. Nämlich

A=B  <==> [mm] \mathcal{P}(A)=\mathval{P}(B). [/mm]

Dies beinhaltet zwei Aussagen, die gezeigt werden müssen:

1. A=B ==> [mm] \mathcal{P}(A)=\mathval{P}(B) [/mm]
2. [mm] \mathcal{P}(A)=\mathcal{P}(B) [/mm] ==> A=B

Zu 1.:
Voraussetzung: A=B
zu zeigen: [mm] \mathcal{P}(A)=\mathcal{P}(B), [/mm]

[mm] dh.\mathcal{P}(A)\subseteq \mathcal{P}(B) [/mm]
und [mm] \mathcal{P}(B)\subseteq\mathcal{P}(A). [/mm]

dh.  i) [mm] T\in \mathcal{P}(A) [/mm] ==> [mm] T\in\mathcal{P}(B) [/mm]
und ii) [mm] T\in \mathcal{P}(B) [/mm] ==> [mm] T\in\mathcal{P}(A) [/mm]

(All dies sind Überlegungen, die sich aus den Definitionen ergeben.)

Beweis:
i)
Sei [mm] T\in \mathcal{P}(A) [/mm]
==>
[mm] T\subseteq [/mm] A
==> und jetzt weiter.

ii)...


Dann die andere Richtung.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de