www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Gleichmäßige Konvergenz
Gleichmäßige Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Konvergenz: ...bei Funktionenfolge
Status: (Frage) beantwortet Status 
Datum: 21:41 Do 21.04.2011
Autor: sh4nks

Aufgabe
Seien M1 = [0, 1] und M2 = [1, 2] und [mm] g_{n}(x) [/mm] = [mm] \bruch{nx}{1 +n^{2} * x^{2}} [/mm]  , n Element natürliche Zahlen
. Berechnen Sie die Grenzfunktion
g(x) von gn(x) und entscheiden Sie, ob [mm] g_{n}(x) [/mm] auf M1 bzw. M2 gleichmäßig gegen g(x)
konvergiert.


Hallo zusammen,

mein Ansatz: die Funktion [mm] g_{n}(x) [/mm] konvergiert punktweise gegen g(x)=0 da lim  [mm] g_{n}(x) [/mm] = 0 [mm] \forall [/mm] x.

Gleichmäßige Konvergenz könnte man zB dadurch zeigen, dass der Betrag von [mm] g_{n}(x) [/mm] - 0 kleiner ist als die Folge [mm] a_{n}= \bruch{1}{n}. [/mm]

Stimmt das so? Die beiden Intervalle in der Angabe irritieren mich...

Im voraus vielen Dank!

        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Fr 22.04.2011
Autor: fred97

1. [mm] (g_n) [/mm] ist auf [mm] M_1 [/mm] nicht glm. konvergent, denn [mm] g_n(1/n)=1/2 [/mm]  für jedes n

2. [mm] (g_n) [/mm] ist auf [mm] M_2 [/mm] glm. konvergent. Zeige:

             $0 [mm] \le g_n(x) \le [/mm] 1/n$ für jedes n und jedes x [mm] \in M_2. [/mm]

FRED

Bezug
                
Bezug
Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 22.04.2011
Autor: sh4nks

Vielen Dank, habe aber gerade sehen müssen dass das Programm annimmt, die ohne die Eingabenhilfen unten erstellt werden.

Die Funktionenfolge hat in Wirklichkeit ein [mm] n^{2} [/mm] im Nenner, gibt es hier immer noch keine gleichmäßige Konvergenz in beiden Intervallen?

Gruß Markus

Bezug
                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 22.04.2011
Autor: leduart

Hallo
hast du denn mal [mm] x_n=1/n [/mm] eingesetzt
gruss leduart


Bezug
                                
Bezug
Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Fr 22.04.2011
Autor: sh4nks

Wenn ich für x 1/n einsetzen würde, bekäme ich 1/2 heraus... wieso muss ich für x diese Folge einsetzen?

Gruß Markus

Bezug
                                        
Bezug
Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Fr 22.04.2011
Autor: leduart

Hallo
du musst nicht! aber so ist am schnellsten zu sehen dass die fkt nicht glm konvergiert in [0,1] denn für jes n findest du ein x, sodass [mm] |f_n(x)-f|=1/2> \epsilon, [/mm] falls [mm] \epsilon<0.5 [/mm]
gruss leduart


Bezug
                                                
Bezug
Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mo 25.04.2011
Autor: sh4nks

Einleuchtend, danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de