www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: Delta Abschätzen
Status: (Frage) beantwortet Status 
Datum: 23:22 Mi 18.11.2015
Autor: Skyrula

Aufgabe
Zeige, das [mm] f(x)=\frac{1}{x} [/mm] auf dem Intervall [mm] I=[a,\infty),a>0 [/mm] gleichmäßig stetig ist.

Hallo zusammen,

ich würde die Aufgabe gerne mit dem Delta-Epsilon Kriterium bewältigen können. Das Kriterium besagt:

[mm] \forall \varepsilon [/mm] >0 [mm] \exists \delta>0 \forall [/mm] x,y [mm] \in [/mm] I: [mm] |x-y|<\delta \rightarrow |f(x)-f(y)|<\varepsilon [/mm]

Mein Problem liegt darin [mm] \delta [/mm] rechnerisch ermittel zu können.

Hier mein Ansatz:
[mm] |f(x)-f(y)|<\varepsilon \gdw |\frac{1}{x}-\frac{1}{y}|<\varepsilon \gdw |\frac{x-y}{xy}|<\varepsilon [/mm]

Ich habe zahlreiche Umformungen ausprobiert, jedoch darf bei gleichmäßiger Stetigkeit [mm] \delta [/mm] nur von [mm] \varepsilon [/mm] abhängen und das bekomme ich einfach nicht auf die Kette.

Über Hilfe würde ich mich sehr freuen.

Danke im Vorraus.



        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 04:55 Do 19.11.2015
Autor: fred97


> Zeige, das [mm]f(x)=\frac{1}{x}[/mm] auf dem Intervall
> [mm]I=[a,\infty),a>0[/mm] gleichmäßig stetig ist.
>  Hallo zusammen,
>  
> ich würde die Aufgabe gerne mit dem Delta-Epsilon
> Kriterium bewältigen können. Das Kriterium besagt:
>  
> [mm]\forall \varepsilon[/mm] >0 [mm]\exists \delta>0 \forall[/mm] x,y [mm]\in[/mm] I:
> [mm]|x-y|<\delta \rightarrow |f(x)-f(y)|<\varepsilon[/mm]
>  
> Mein Problem liegt darin [mm]\delta[/mm] rechnerisch ermittel zu
> können.
>  
> Hier mein Ansatz:
>  [mm]|f(x)-f(y)|<\varepsilon \gdw |\frac{1}{x}-\frac{1}{y}|<\varepsilon \gdw |\frac{x-y}{xy}|<\varepsilon[/mm]
>  
> Ich habe zahlreiche Umformungen ausprobiert, jedoch darf
> bei gleichmäßiger Stetigkeit [mm]\delta[/mm] nur von [mm]\varepsilon[/mm]
> abhängen und das bekomme ich einfach nicht auf die Kette.
>  
> Über Hilfe würde ich mich sehr freuen.
>  
> Danke im Vorraus.



Du hast kurz vorm Ziel schlapp gemacht und das liegt daran, weil Du am Start etwas vergessen hast. Meistens ist es in der Mathematik so, dass es ohne Voraussetzungen nicht geht.

Hier ist f definiert auf  $ [mm] I=[a,\infty)$ [/mm] ,  mit $a>0 $.

Dann gilt für x,y [mm] \in [/mm] I:

   [mm] |f(x)-f(y)|=\bruch{|x-y|}{xy} \le \bruch{1}{a^2}|x-y|$. [/mm]

Siehst Du nun, wie Du zu vorgegebenem [mm] \varepsilon [/mm] ein geeignetes [mm] \delta [/mm] wählen kannst ?

FRED

P.S. f ist auf I sogar Lipschitzstetig.

>  
>  


Bezug
                
Bezug
Gleichmäßige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 19.11.2015
Autor: Skyrula

Hallo,

vielen Dank für die Hilfe und den Tipp,

mit deiner Hilfe komme ich dann auf [mm] \frac{1}{a^2}|x-y|<\varepsilon \gdw \frac{1}{a^2}\delta<\varepsilon \le \delta<\varepsilon a^2 [/mm]

Bezug
                        
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Fr 20.11.2015
Autor: fred97


> Hallo,
>  
> vielen Dank für die Hilfe und den Tipp,
>  
> mit deiner Hilfe komme ich dann auf
> [mm]\frac{1}{a^2}|x-y|<\varepsilon \gdw \frac{1}{a^2}\delta<\varepsilon \le \delta<\varepsilon a^2[/mm]

Das ist Murks ! Aus Deinen obigen Ungleichungen würde folgen

[mm] \varepsilon <\varepsilon a^2, [/mm]

also [mm] a^2>1 [/mm] !!!

Ist [mm] \varepsilon>0 [/mm] gegeben, so wähle [mm] \delta=a^2*\varepsilon [/mm]

FRED

>  


Bezug
        
Bezug
Gleichmäßige Stetigkeit: Tipp
Status: (Antwort) fertig Status 
Datum: 08:30 Do 19.11.2015
Autor: HJKweseleit

[mm] \delta [/mm] darf nicht von x bzw. y abhängen, wohl aber von a.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de