www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Gleichmäßige Stetigkeit
Gleichmäßige Stetigkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmäßige Stetigkeit: Noch eine Aufgabe fürs Sommerl
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 10:11 Mi 12.09.2012
Autor: fred97

Aufgabe
Sei [mm] $\alpha \in [/mm] (0, [mm] \bruch{\pi}{2})$, [/mm]  sei [mm] $S_{\alpha}:=\{z \in \IC:0<|z| \le 1, |Arg(z)| \le \alpha \}$ [/mm] und [mm] $f(z):=e^{- \bruch{1}{z}}.$ [/mm]

Man zeige, dass f auf [mm] S_{\alpha} [/mm] gleichmäßig stetig ist.

Wie üblich, bitte ich einen der Mod. um entsprechende kennzeichnung der Aufgabe.

Gruß FRED

        
Bezug
Gleichmäßige Stetigkeit: Dummyfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:39 Mi 12.09.2012
Autor: Loddar

Dummyfrage!


Bezug
        
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Do 13.09.2012
Autor: fred97

Schade, dass sich noch niemand an dieser Aufgabe versucht hat.

Sind Hinweise erwünscht ?

FRED

Bezug
        
Bezug
Gleichmäßige Stetigkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:09 Fr 14.09.2012
Autor: Helbig

$f$ läßt sich stetig in 0 fortsetzen. Diese Fortsetzung ist stetig auf dem Kompaktum [mm] $S_\alpha\cup\{0\}$ [/mm] und damit gleichmäßig stetig.

Gruß,
Wolfgang

Bezug
                
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:25 Fr 14.09.2012
Autor: fred97


> [mm]f[/mm] läßt sich stetig in 0 fortsetzen.


Hallo Wolfgang,

Das ist richtig und nicht richtig.

f ist zunächst auf [mm] \IC \setminus \{0\} [/mm] definiert und hat in 0 eine wesentliche Singularität. Daher hat f keine stetige Fortsetzung auf [mm] \IC. [/mm]

Aber die Einschränkung von f auf [mm] S_\alpha [/mm] lässt sich stetig auf den Abschluß von [mm] S_\alpha [/mm] fortsetzen. Das mußt Du noch zeigen.

> Diese Fortsetzung ist
> stetig auf dem Kompaktum [mm]S_\alpha\cup\{0\}[/mm] und damit
> gleichmäßig stetig.

Das stimmt dann.

Gruß



FRED

>  
> Gruß,
>  Wolfgang


Bezug
                        
Bezug
Gleichmäßige Stetigkeit: zweiter Versuch
Status: (Frage) beantwortet Status 
Datum: 20:43 Fr 14.09.2012
Autor: Helbig

Hallo Fred,
tatsächlich dachte ich, die stetige Fortsetzbarkeit von $f$ in $0$ sei trivial. Dem ist aber nicht so! Hier mein zweiter Versuch:

Sei [mm] $f\colon S_\alpha\to \IC,\; z\mapsto e^{-1/z}$. [/mm] Ich zeige, daß $f$ in $0$ stetig fortgesetzt werden kann. Das genügt, denn dann ist die Fortsetzung stetig auf dem Kompaktum [mm] $S_\alpha\cup\{0\}$ [/mm] und damit auch gleichmäßig stetig.

Für $z=x+iy = [mm] |z|*e^{i\varphi} \in S_\alpha$ [/mm] ist $\ x>0$ und [mm] $|\varphi|\le \alpha$. [/mm]

Es folgt [mm] $\left|e^{-1/z}\right|=e^{-x/|z|^2}*\left|e^{iy/|z|^2}\right|=e^{-x/|z|^2}$ [/mm]

und

[mm] $-\frac [/mm] {x} [mm] {|z|^2} [/mm] = [mm] -\frac [/mm] {x} [mm] {x^2+y^2} [/mm] = [mm] -\frac [/mm] {x} [mm] {x^2(1+\tan^2\varphi)} [/mm] = [mm] -\frac [/mm] 1 [mm] {x(1+\tan^2\varphi)}$ [/mm] ( wegen [mm] $\tan\varphi [/mm] = [mm] \frac [/mm] y x$)

[mm] $\le -\frac 1{x(1+\tan^2\alpha)}$ [/mm] (aus [mm] $|\varphi|\le\alpha$ [/mm] folgt [mm] $\tan^2\varphi \le \tan^2\alpha$). [/mm]

Für [mm] $z\in S_\alpha, z\to [/mm] 0$ strebt $x$ von oben gegen 0 und damit [mm] $-\frac [/mm] 1 [mm] {x(1+\tan^2\varphi)}$ [/mm] gegen [mm] $-\infty$. [/mm]

Mit der Einschließung

[mm] $0\le \left|e^{-1/z}\right|=e^{-x/|z|^2} \le e^{-1/x(1+\tan^2\varphi)}$ [/mm] und [mm] $\lim_{t\to-\infty} e^t=0$ [/mm] folgt [mm] $\lim_{z\to 0} [/mm] f(z) = 0$.


Bezug
                                
Bezug
Gleichmäßige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 So 16.09.2012
Autor: fred97


> Hallo Fred,
>  tatsächlich dachte ich, die stetige Fortsetzbarkeit von [mm]f[/mm]
> in [mm]0[/mm] sei trivial. Dem ist aber nicht so! Hier mein zweiter
> Versuch:
>  
> Sei [mm]f\colon S_\alpha\to \IC,\; z\mapsto e^{-1/z}[/mm]. Ich
> zeige, daß [mm]f[/mm] in [mm]0[/mm] stetig fortgesetzt werden kann. Das
> genügt, denn dann ist die Fortsetzung stetig auf dem
> Kompaktum [mm]S_\alpha\cup\{0\}[/mm] und damit auch gleichmäßig
> stetig.
>  
> Für [mm]z=x+iy = |z|*e^{i\varphi} \in S_\alpha[/mm] ist [mm]\ x>0[/mm] und
> [mm]|\varphi|\le \alpha[/mm].
>  
> Es folgt
> [mm]\left|e^{-1/z}\right|=e^{-x/|z|^2}*\left|e^{iy/|z|^2}\right|=e^{-x/|z|^2}[/mm]
>  
> und
>  
> [mm]-\frac {x} {|z|^2} = -\frac {x} {x^2+y^2} = -\frac {x} {x^2(1+\tan^2\varphi)} = -\frac 1 {x(1+\tan^2\varphi)}[/mm]
> ( wegen [mm]\tan\varphi = \frac y x[/mm])
>  
> [mm]\le -\frac 1{x(1+\tan^2\alpha)}[/mm] (aus [mm]|\varphi|\le\alpha[/mm]
> folgt [mm]\tan^2\varphi \le \tan^2\alpha[/mm]).
>
> Für [mm]z\in S_\alpha, z\to 0[/mm] strebt [mm]x[/mm] von oben gegen 0 und
> damit [mm]-\frac 1 {x(1+\tan^2\varphi)}[/mm] gegen [mm]-\infty[/mm].


Hallo Wolfgang,

oben meinst Du wohl [mm]-\frac 1 {x(1+\tan^2\alpha)}[/mm]


>  
> Mit der Einschließung
>  
> [mm]0\le \left|e^{-1/z}\right|=e^{-x/|z|^2} \le e^{-1/x(1+\tan^2\varphi)}[/mm]
> und [mm]\lim_{t\to-\infty} e^t=0[/mm] folgt [mm]\lim_{z\to 0} f(z) = 0[/mm].


prima gemacht


Gruß FRED

>  
>  


Bezug
                                        
Bezug
Gleichmäßige Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 So 16.09.2012
Autor: Helbig

Hallo FRED,

> >
> > Für [mm]z\in S_\alpha, z\to 0[/mm] strebt [mm]x[/mm] von oben gegen 0 und
> > damit [mm]-\frac 1 {x(1+\tan^2\varphi)}[/mm] gegen [mm]-\infty[/mm].
>  

>  
> oben meinst Du wohl [mm]-\frac 1 {x(1+\tan^2\alpha)}[/mm]

Ja, und unten auch:

> > Mit der Einschließung
>  >  
> > [mm]0\le \left|e^{-1/z}\right|=e^{-x/|z|^2} \le e^{-1/x(1+\tan^2\varphi)}[/mm]
> > und [mm]\lim_{t\to-\infty} e^t=0[/mm] folgt [mm]\lim_{z\to 0} f(z) = 0[/mm].


Danke für Aufgabe und Korrektur!

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de