Gleichschenkliges Dreieck < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sind drei Punkte A, B und C im dreidimensionalen Raum. Diese drei Punkte bilden ein Dreieck. Es soll nachgewiesen werden, dass es sich um ein gleichschenkliges Dreieck handelt. |
Hallo.
Wenn die Schenkelseiten AC und BC gleich lang sind und es sich tatsächlich um ein gleichschenkliges Dreieck handelt (mit Spitze C):
Kann man den Nachweis auch damit erbringen, dass man das Skalarprodukt vom Vektor AC und Vektor AB ausrechnet und vergleicht, mit dem Skalarprodukt vom Vektor BA und BC?
Wenn das Ergebnis von beiden Skalarprodukten gleich ist, bedeutet dass, das damit der Nachweis der gleichlangen Schenkel erbracht ist?
Ich weiß, es geht offensichtlicher und einfacher mit den Beträgen von AC und BC oder auch mit der Winkelberechnung. Aber die Frage ist, reicht der Vergleich der Skalarprodukte?
LG
|
|
|
|
Es seien [mm]\vec{a}, \vec{b}, \vec{c}[/mm] die Ortsvektoren der Punkte [mm]A,B,C[/mm]. Dann gilt:
[mm]\overrightarrow{AC} \cdot \overrightarrow{AB} = \overrightarrow{BA} \cdot \overrightarrow{BC} \ \ \Leftrightarrow \ \ \left( \vec{c} - \vec{a} \right) \cdot \left( \vec{b} - \vec{a} \right) = \left( \vec{a} - \vec{b} \right) \cdot \left( \vec{c} - \vec{b} \right) \ \ \Leftrightarrow \ \ \vec{b} \cdot \vec{c} - \vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{b} + \vec{a}^{\, 2} = \vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{c} + \vec{b}^{\, 2}[/mm]
[mm]\Leftrightarrow \ \ \vec{a}^{\, 2} - 2 \vec{a} \cdot \vec{c} = \vec{b}^{\, 2} - 2 \vec{b} \cdot \vec{c} \ \ \Leftrightarrow \ \ \vec{a}^{\, 2} - 2 \vec{a} \cdot \vec{c} + \vec{c}^{\, 2}= \vec{b}^{\, 2} - 2 \vec{b} \cdot \vec{c} + \vec{c}^{\, 2} \ \ \Leftrightarrow \ \ \left( \vec{c} - \vec{a} \right)^2 = \left( \vec{c} - \vec{b} \right)^2[/mm]
[mm]\Leftrightarrow \ \ \overrightarrow{AC}^{\, 2} = \overrightarrow{BC}^{\, 2} \ \ \Leftrightarrow \ \ \left| \overrightarrow{AC} \right| = \left| \overrightarrow{BC} \right|[/mm]
|
|
|
|