www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Gleichsetzen zweier Funktionen
Gleichsetzen zweier Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzen zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 So 10.10.2004
Autor: Blume123

Hallo..
ich habe hier zwei Funktionen, die ich gleichsetzen möchte, aber ich schaffe es irgendwie nicht selber :-(

V= [mm] 1/3*a^2*b [/mm]     und [mm] 3=4*a*b+a^2 [/mm]

Ich muss danach davon die Ableitung bilden und die Extremstellen berechnen, aber ich hoffe ich schaffe das danach weider selber...



        
Bezug
Gleichsetzen zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 10.10.2004
Autor: Paulus

Hallo Blume

> Hallo..
>  ich habe hier zwei Funktionen, die ich gleichsetzen
> möchte, aber ich schaffe es irgendwie nicht selber :-(
>  
> V= [mm]1/3*a^2*b[/mm]     und [mm]3=4*a*b+a^2 [/mm]
>  
> Ich muss danach davon die Ableitung bilden und die
> Extremstellen berechnen, aber ich hoffe ich schaffe das
> danach weider selber...
>  

So, wie ich das interpretiere, ist die Gleichung [mm] $4ab+a^{2}=3$ [/mm] eine Nebenbedingung. Da kann man jeweils einfach nach einer Variablen auflösen und in der Hauptbedingung, also der Funktion, die zu minimieren ist, einsetzen.

Hier würde ich also einfach nach $b$ auflösen:

[mm] $4ab+a^{2}=3$ [/mm]
[mm] $4ab=3-a^{2}$ [/mm]
[mm] $b=\bruch{3-a^{2}}{4a}$ [/mm]

Das setzt du also in der Volumenformel ein, differenzierst nach $a$, setzt dieses $= 0$ und löst die Gleichung nach $a$ auf.

Mit der obigen Formel

[mm] $b=\bruch{3-a^{2}}{4a}$ [/mm]

kannst du dann das $b$ auch noch berechnen. :-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Gleichsetzen zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 10.10.2004
Autor: Blume123

Ja, das ist aber ja gerade mein Problem, dass ich es nicht schaffe das alles dann zusammenzufassen, d.h. dass ich dann die Extremstellen berechnen kann...

Bezug
                        
Bezug
Gleichsetzen zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 So 10.10.2004
Autor: Paulus

Hallo Blume

die Begrüssung fehlt ja immer noch!! Soll ich mich mit dir überhaupt noch weiter beschäftigen?

Also:

Es gilt ja:

[mm] $V=\bruch{1}{3}a^{2}b$ [/mm]

Wie ich bereits gezeigt habe, gilt:

[mm] $b=\bruch{3-a^{2}}{4a}$ [/mm]

Das setzt man jetzt einfach in der Hauptbedingung ein:

[mm] $V=\bruch{1}{3}a^{2}\bruch{3-a^{2}}{4a}$ [/mm]

Ein $a$ kürzt sich wohl weg:

[mm] $V=\bruch{1}{3}a\bruch{3-a^{2}}{4}=\bruch{1}{12}a(3-a^{2})=\bruch{1}{4}a-\bruch{1}{12}a^{3}$ [/mm]

Kannst du das jetzt weiter bearbeiten?

(Nach $a$ ableiten und so weiter?)

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de